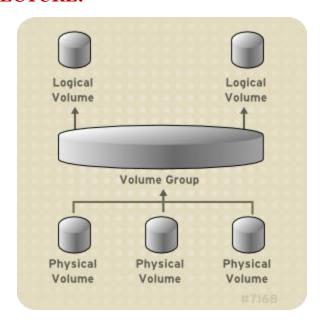
GETTING STARTED WITH LOGICAL VOLUME MANAGEMENT


> LOGICAL VOLUME MANAGEMENT (LVM):

- LVM is a form advanced partition management.
- LVM is a method of allocating hard drive space in to logical volumes that can be **easily resized of partitions.**
- It creates a layer of abstraction over physical storage, which helps you to create logical storage volumes. This provides much greater flexibility in a number of ways than using physical storage directly.

ADVANTAGES OF LVM:

- Flexible capacity
- Convenient device naming
- Resizable storage volumes
- Online data relocation
- Striped Volumes
- RAID volumes
- Volume snapshots
- Cache volumes

LVM ARCHITECTURE:

PHYSICAL VOLUME (PV):

• **A PV** is a partition or whole disk designated for LVM use. To use the device for an LVM logical volume, the device must be initialized as a pv.

VOLUME GROUP (VG):

- A VG is a collection of physical volumes (PVs), which creates a pool of disk space out of which logical volumes can be allocated.
- Within a volume group, the disk space available for allocation is divided into units of a fixed-size called extents.
- An extent is the smallest unit of space that can be allocated. Within a physical volume, extents are referred to as physical extents.

LOGICAL VOLUME (LV):

- A logical volume represents a mountable storage device.
- An administrator can grow or shrink logical volumes without destroying data, unlike standard disk partitions.
- You can lose data if you shrink a logical volume to a smaller capacity than the data on the volume requires.
- Logical partitions which can resize, format and mount...etc.

LVM CONFIGURATION FILES:

/etc/lvm/lvm.conf : Configuration file.

/etc/lvm/cache/.cache : Device name filter cache file (configurable).

/etc/lvm/backup/ : Automatic volume group metadata backups.

/etc/lvm/archive/ : Automatic volume group metadata archives.

LVM IMPLEMENTATION STEP BY STEP:

• Create physical volume or volumes from the existing hard drives:

```
Here we are creating three partitions [/dev/nvme0n1p{11,12,13}.

#fdisk /dev/nvmeon1

change Linux system type to Linux lvm.

#partprobe /dev/nvme0n1
```

CREATING PHYSICAL VOLUMES:

#pvcreate /dev/nvme0n1p{11,12,13}

 \rightarrow To verify the physical volumes:

#pvdisplay or #pvs

 \rightarrow To scanning physical devices:

#pvscan

#lsblk

CREATING VOLUME GROUP:

#vgcreate india /dev/nvmeon1p{11,12}

 \rightarrow To verify volume group details:

#vgdisplay india (or) #vgs

 \rightarrow Scanning disks for volume groups:

#vgscan

NOTE: By default, one **physical extend (PE)** size is 4MB.

To change physical extend (PE) size:

#vgcreate -s 8 india /dev/nvme0n1p{11,12}

→ To Extend existing volume group:

#vgextend india /dev/nvme0n1p13
#vgdisplay

→ To reducing Volume Group:

#vgreduce india /dev/nvme0n1p13

CREATING LOGICAL VOLUMES:

 \rightarrow Hare logical volume size is 2G from the group of India.

#lvcreate -L+2G -n /dev/india/ap

→ To verify Logical volume details:

#lvdisplay /dev/india/ap (or) #lvs

 \rightarrow Now to verify Volume group details:

#vhdisplay

 \rightarrow Format logical volume:

#mkfs.xfs -f /dev/india/ap

 \rightarrow Mounting File system:

#mkdir /lvm-data #mount /dev/india/ap /lvm-data #df -h

 \rightarrow To make file system permanent in /etc/fstab file:

/dev/india/ap /lvm-data xfs defaults 0 0 #systemctl daemon-reload #mount /lvm-data #df -h

EXTEND A LOGICAL VOLUME:

We have seen how to create a logical volume from scratch, but in most cases, you will need to increase the size of an already existing logical volume so it can accommodate more data.

\rightarrow To extend 1GB size to /dev/india/ap file system:

```
#lvextend -L+1G /dev/india/ap
#lvdisplay
#vgdisplay
```

\rightarrow One last step is to resize the filesystem:

```
#df -h
#xfs_growfs /dev/india/ap
#df -h
```

we can see that data blocks have been changed; filesystem has been extended.

REDUCING LOGICAL VOLUME SIZE:

```
#lvreduce -L-1G /dev/india/ap
#lvdisplay
```

REMOVING LOGICAL VOLUMES:

NOTE: Before removing unmount a file system

```
#lvremove /dev/india/ap
#lvdiplay
```

REMOVING VOLUME GROUP:

```
#vgremove india#vgdisplay
```

REMOVING PHYSICAL VOLUMES:

```
#pvremove /dev/nvme0n1p{11,12,13}
#pvdiplay
```

NOTE: All done, our Logical Volume has been successfully completed!