
Many-To-Many Relationship:

 If we want Many-To-Many Relationship, then multiple child records can depend on

multiple parent records

 For example, multiple Courses like Python, Django are joined by single Student

 Like Virat and multiple Students like Virat, Rohit are joined single Course like Python.

 We use ManyToManyField() to implement Many-To-Many relationaship.

 NOTE : Django creates a new model to store the relationaships of child and parent

models internally. This new model is called "intermediate" model.

 So after executing the makemigrations and migrate commands then we are getting 13

tables here.

 By default django creates 10 tables for every application and 2 tables for our course

model and student models and 1 table is for storing relationships links of the both child

and parent tables.

Syntax : student = models.ManyToManyField(Student)

 Many-To-Many Relationship doesn’t support all cascading rules.

 It supports only default cascading rule that is models.CASCADE

 If we delete any parent record which has the child record, then corresponding child

record will not delete in the child table, it will delete the relationaships link from

intermediate table.

 If we delete all parent records then all relationships will be deleted from the

intermediate table, no child record will be deleted.

Create a project using Many-To-Many-Relationship :
Step1: Create a Django ProjectName like ManyToMany_Project

Step2: Create a Application Name like ManyToMany _App

Step3: Create Database Name like 7am_mtmdb

Step4: Goto settings.py file and configure database details under DATEBASE section.

DATABASES = {

 'default': {

 'ENGINE' : 'django.db.backends.mysql',

 'NAME' : '7am_mtmdb',

 'USER' : 'root',

 'PASSWORD' : 'root',

 }

}

Step5: Open models.py file and create required models

from django.db import models

class Student(models.Model):
 sno = models.IntegerField()
 sname = models.CharField(max_length=30)
 marks = models.IntegerField()

 def __str__(self):
 return self.sname

class Course(models.Model):
 cno = models.IntegerField()
 cname = models.CharField(max_length=30)
 cfee = models.FloatField()

 student = models.ManyToManyField(Student)

 def __str__(self):
 return self.cname

Step7: open admin.py file and create required admin logics

from django.contrib import admin
from OneToOne_App.models import Student,Course

class StudentAdmin(admin.ModelAdmin):
 list_display = ['sno', 'sname', 'marks']

class CourseAdmin(admin.ModelAdmin):
 list_display = ['cno', 'cname', 'cfee']

admin.site.register(Student, StudentAdmin)
admin.site.register(Course, CourseAdmin)

Step8: Execute the makemigrations command to convert model code into SQL code format

 python manage.py makemigrations

Step9: Execute the migrate command to execute SQL code in database site and creating

tables more models.

 python manage.py migrate

Step10: Execute the createsuperuser command for creating admin creadentials.

 python manage.py createsuperuser

Then it will ask like below details,

Username: Virat

Email : virat@gmail.com

Password: admin123

Password (again): admin123

Step11: Now execute the runserver command for running the project

 python manage.py runserver 8000

Step12: Now open the required browser and then send admin/ url request from the

browser then we will get admin login page response like below

Now we will see our Student and Course model related tables in Admin site.

Now add some records into both Student and course tables and open them.

Step13: Goto database and check the tables

mysql> select * from manytomany_app_student;

+----+-----+-------+-------+

| id | sno | sname | marks |

+----+-----+-------+-------+

| 1 | 101 | Virat | 80 |

| 2 | 102 | Rohit | 90 |

| 3 | 103 | Surya | 85 |

+----+-----+-------+-------+

mysql> select * from manytomany_app_course;

+----+-----+---------+------+

| id | cno | cname | cfee |

+----+-----+---------+------+

| 1 | 201 | Python | 5000 |

| 2 | 202 | Django | 6000 |

| 3 | 203 | RESTAPI | 3000 |

+----+-----+---------+------+

mysql> select * from manytomany_app_course_student;

+----+-----------+------------+

| id | course_id | student_id |

+----+-----------+------------+

| 1 | 1 | 1 |

| 2 | 1 | 3 |

| 3 | 2 | 1 |

| 4 | 2 | 2 |

| 5 | 3 | 2 |

| 6 | 3 | 3 |

+----+-----------+------------+

Here,

If we delete any parent record which has the child record, then corresponding child record will

not delete in the child table, it will delete the relationaships link from intermediate table.

If we delete all parent records then all relationships will be deleted from the intermediate

table, no child record will be deleted.

Field name restrictions when we are creating django model field names.

1. We can’t use python keywords as field names but we can use database keywords as field

name

For example:

delete = models.IntegerField() ------> right

def = models.IntegerField() ------> wrong

2. We can use only underscore special character in the field name but we can’t use any other

special characters

For example:

first_num = models.IntegerField() ------> right

first%num = models.IntegerField() ------> wrong

3. We can use any number of underscores individually in a single field name but we can not

use two or more underscores in a sequence.

For example:

my_first_emp_id = models.IntegerField() ------> right

emp___id = models.IntegerField() ------> wrong

4. We can use digits in the field name but the field name should not startwith digit.

For example:

first_num1 = models.IntegerField() ------> right

1first_num = models.IntegerField() -------> wrong

Note: Some of the field types that we are using regularly in Django models.

 models.SmallIntegerField()

 models.IntegerFiled()

 models.BigIntegerField()

 models.PositiveSmallIntegerField()

 models. PositiveIntegerFiled()

 models. PositiveBigIntegerField()

 models.FloatField()

 models.DecimalField(max_digites=13,decimal_places=2) ex : 30457.60

 models.CharField()

 models.TextField()

 models.EmailField()

 models.DateField() -- mm/dd/yyyy

 models.TimeField()

 models.DateTimeField()

 models.FileField()

 models.ImageField()

 models.OneToOneField()

 models.ForeignKey()

 models.ManyToManyField()

 models.AutoField()

Customizing the Model class Table name and model field

Column names.

from django.db import models

class Employee(models.Model):
 eno = models.IntegerField(primary_key=True)
 ename = models.CharField(max_length=30, db_column='employee_name')
 email = models.EmailField(unique=True) # admin@gmail.com
 mobile = models.IntegerField(unique=True, null=True, blank=True)
 address = models.TextField(default='Hyderabad')

 class Meta:
 db_table = 'employee'

Here, Meta class giving some extra information to the current Model class.

db_table attribute represents the model table name. Here django creates table name is like

“employee”.

By default django creates table names like applicationName_modelName.

db_column optional attribute represents required format column name in the database

table.

blank=True accepting a blank value for a model field in form presentation.

Null=True accepting a null value for a model field in the database table.

