
Python Regular Expressions Methods:
 If we want to represent a group of Strings according to a particular

format/pattern then we should go for Regular Expressions.

 i.e Regualr Expressions is a declarative mechanism to represent a group of

Strings accroding to particular format/pattern.

Eg 1: We can write a regular expression to represent all mobile numbers

Eg 2: We can write a regular expression to represent all mail ids.

 We can develop Regular Expression Based applications by using python

module: re

 This module contains several inbuilt functions to use Regular Expressions

very easily in our applications.

For example some Important functions of "re" module:

1. match()

 1. start() ---> returns the start index of the matched substring.

 2. end() ---> returns the end index of the matched substring.

 3. group() ---> returns the part of the string where there is a match.

 4. span() ---> returns a tuple containing start and end index of the

matched part.

match.re and match.string

The re attribute of a matched object returns a regular expression object.

Similarly, string attribute returns the passed string.

>>> match.re
re.compile('(\\d{3}) (\\d{2})')

>>> match.string
'39801 356, 2102 1111'

2. fullmatch()

3. search()

4. findall()

5. sub()

6. subn()

7. split()

8. compile()

9. finditer()

1. match():

We can use match() function to check the given pattern at 'beginning' of target

string.

If the match is available then we will get Match object, otherwise we will get

None.

Example:

import re

s1 = input('Enter a pattern to check :')

m = re.match(s1 , 'Python is a language')

print('start index is : ' , m.start()) ,

print('end index is :' , m.end())

print('Matched string is :' , m.group())

Output:

2. fullmatch():

We can use fullmatch() function to match a pattern to all of target string.

 i.e complete string should be matched according to given pattern.

If complete string matched then this function returns Match object otherwise it

returns None.

Example:

import re

s = input("Enter pattern to check: ")

m = re.fullmatch(s,"python Srinivas")

if m != None:

 print("Match is available at the beginning of the String")

 print('start index is : ' , m.start()) ,

 print('end index is :' , m.end())

 print('Matched string is :' , m.group())

else:

 print("Match is not available at the beginning of the String")

Output:

3. search():

We can use search() function to search the given pattern in the target string.

If the match is available then it returns the Match object which represents first

occurrence of the match. If the match is not available then it returns None

Example:

import re

target_string = 'Python is easy to learning'

sub_string = input("Enter any sub string :")

match_object = re.search(sub_string , target_string)

if match_object:

 print('Yes, we have a match.')

 print("The match starts in ", match_object.start()," position")

 print("The match ends in ", match_object.end()," position")

 print("The matched string value is ", match_object.group())

else:

 print('No, we don"t have any match.')

Output:

Q. How to check if the string starts with 'Python' and ends with 'learning' ?

import re

target_string = 'Python is easy to learning'

m = re.search("^Python.*learning$", target_string)

if m:

 print('Yes, we have a match.')

else:

 print('No, we don"t have any match.')

Output:

Example3: How to find out white space is available or not in a target string.

import re

target_string = 'Python is easy to learning'

m = re.search("\s", target_string)

if m:

 print('Yes, we have a match.')

 print('The first white-space charecter is located in position :' , m.start())

else:

 print('No, we don"t have any match.')

Output 1:

4. findall():

We can use findall() function to find all occurrences of the pattern match.

This function returns a list object which contains all occurrences of patterns.

Otherwise it returns empty list object.

Example:

import re

pattern_str = input("Enter pattern to check: ")

result = re.findall(pattern_str , "python is a language.python is easy.")

if len(result) != 0:

 print(pattern_str ,"match is available in Target String")

 print(result)

else:

 print(pattern_str , "match is not available in Target String")

Output 1:

Output 2:

Q. How to find out only list of digits from given alpha_numeric string?

import re

digits_lists = re.findall("[0-9]","9py9th4on8 Sr8ina5vas3rao025")

print(digits_ lists)

Output:

Q. How to find out only numbers from given alpha_numeric string?

import re

digits = re.findall("[0-9]","9py9th4on8 Sr8ina5vas3rao025")

numbers = "".join(digits)

print(numbers)

Output:

Q. How to find out only non-digits data from given alpha_numeric string?

Way-1:

import re

values_list = re.findall('[\D]' , "1py23th5on la96ngu3age2")

string_data = ''.join(values_list)

print(string_data)

Output:

Way-2:

import re

values_list = re.findall('[a-zA-Z\s]' , "1py23th5on la96ngu3age2")

string_data = ''.join(values_list)

print(string_data)

Output:

Q. How to find out given alpha-numeric string ends with 25 or not?

import re

end_digits = re.findall("25$","9py9th4on8 sr8ini5va3srao025")

print(end_digits)

Output:

Q. Task: Write a pattern to check which of the words do not have any vowels in

the given Statement ? Note: We shall use \w* pattern for the purpose.

import re

list_data = re.findall(r"\w*", "Fly in the sky.")

print(list_data)

for word in list_data:

 data = re.search(r"[aeiou]" , word)

 if word!='' and data==None:

 print(word)

Output:

Finding word starting with vowels

import re

string = 'Errors should never pass silently. Unless explicitly silenced.'

obj = re.findall(r'\b[aeiouAEIOU]\w+', string)

print(obj)

Output:

6. split():

The split() function returns a list object where the string has been split at each

match.

Q. Write a pattern to split the given statement as number of words?

import re

m = re.split('\s',"python is a language. python is easy.")

print(m)

Output:

Note: You can control the number of occurrences by specifying the 'maxsplit'

parameter.

Example:

import re

m = re.split('\s',"python is a language. python is easy.",2)

print(m)

Output:

7. sub():

Here sub() means substitution or replacement.

The sub() function replaces the matches with the text of your choice.

Syntax : re.sub(regex , replacement_string , target_string)

In the target string every matched regex pattern will be replaced with provided

replacement values.

Q. How to Replace the every charecter with # symbol in given target string?

import re

result = re.sub('[a-zA-Z]' , "#" , "9py9th4on8 sr8ini5va3srao025")

print(result)

Output:

Note: You can control the number of replacements by specifying the 'count'

parameter.

import re

result = re.sub('[a-zA-Z]',"#","9py9th4on8 sr8ini5va3srao025",4)

print(result)

Output:

8. subn():

It is exactly same as sub() except it can also returns the number of replacements.

This function returns a tuple where first element is "result string" and second

element is "number of replacements".

Syntax : subn(result_string , number_of_replacements)

Example:

import re

result = re.subn('[a-zA-Z]',"#","9py9th4on8 sr8ini5va3srao025")

print(result)

print("The Result String:",result[0])

print("The number of replacements:",result[1])

Output:

re.finditer()

The re.finditer() function returns an iterator object of all matches in the target

string.

For each matched group, start and end positions can be obtained by span()

method

For each matched group, start position can be obtained by start() method

For each matched group, end position can be obtained by end() method

For each matched group, matched string value can be obtained by group() method

Example:

from re import finditer

string = "Try to earn while you learn"

iter_object = finditer("earn", string)

for match in iter_object:

 print(match.span())

 print('start index is : ' , match.start()) ,

 print('end index is :' , match.end())

 print('Matched string is :' , match.group())

 print()

Output:

re.compile()

The re.compile() function returns a pattern object which can be repeatedly used in

different regex functions.

In the following example, a string 'is' is compiled to get a pattern object and is

subjected to the search() method.

Example:

from re import *

pattern = compile(r'[aeiou]')

string = "Flat is better than nested. Sparse is better than dense. xyz"

list_of_words = split('\s', string)

for word in list_of_words:

 print(word,'--->>', pattern.match(word))

Output:

Note: The same pattern object can be reused in searching for words having

vowels, as shown below.

for word in list_of_words:

 print(word,'--->>', pattern.search(word))

Output:

re.compile():

This function compiles a regular expression pattern into a regular

expression object. This is useful when you need to use an expression

several times.

Example:

import re

string = 'Simple is better than complex. Complex is better than complicated.'

pattern = re.compile(r'is')

obj1 = pattern.match(string)

obj2 = pattern.search(string)

obj3 = pattern.findall(string)

obj4 = pattern.sub(r'was', string)

if obj1:

 print("input string biggens with 'is' word",)

else:

 print("input string not biggens with 'is' word",)

if obj2:

 print("input string contains 'is' word at",obj2.start(),"position")

else:

 print("input string not contains 'is' word")

if obj3:

 print("Result is :",obj3)

else:

 print("input string not contains 'is' word")

if obj4:

 print(obj4)

else:

 print("input string not contains 'is' word")

Output:

	match.re and match.string
	re.compile():

