
Python Encapsulation Concept:
 The wrapping up of data and function together, into a single unit is called as

encapsulation.

Data + Function ----->> Class

 This feature keeps the data safe from outside interface and misuse.

 This led to a concept of data hiding.

 In an object oriented python program, you can restrict access to methods

and variables.

 This can prevent the data from being modified by accident and is known as

encapsulation.

 Encapsulation restricted accesss to methods or variables.

What is Encapsulation?

 When working with classes and dealing with sensitive data, providing global

access to all the variables used within the program is not a good choice.

 Encapsulation offers a way for us to access the required variables without

providing the program full-fledged access to any of those variables.

 Updating, modifying, or deleting data from variables can be done through

the use of methods that are defined specifically for the purpose.

 The benefit of using this approach to programming is improved control over

the input data and better security.

What is Encapsulation in Python?

 The concept of encapsulation is the same in all object-oriented programming

languages.

 The difference is seen when the concepts are applied to particular languages.

 Compared to languages like Java that offer access modifiers (public or

private) for variables and methods, Python provides access to all the

variables and methods globally.

 Check the below demonstration of how variables can easily be accessed.

Example:

class Person:

 def __init__(self, name, age=0):

 self.name = name

 self.age = age

 def display(self):

 print("Person Name is :",self.name)

 print("Person Age is :",self.age)

person = Person('Srinivas', 30)

accessing using class method

person.display()

accessing directly from outside

print("Person Name :",person.name)

print("Person Age :",person.age)

Output:

Person Name is : Srinivas

Person Age is : 30

Person Name : Srinivas

Person Age : 30

Note: Since we do not have access modifiers in Python, we will use a few different

ways to control the access of variables within a Python program.

Preocedure(different ways) to Control Access :

 There are multiple methods(ways) that are offered by Python to limit

variable and method access across the program. Let’s go over the methods in

detail.

Using Single Underscore :

 A common Python programming convention to identify a protected variable

is by prefixing it with an underscore.

 Now, this doesn’t really make any difference on the compiler side of things.

 The variable is still accessible as usual. But being a convention that

programmers have picked up on, it tells other programmers that the

variables or methods have to be used only within the scope of the class.

Example:

class Person:

 def __init__(self, name, age=0):

 self.name = name

 self._age = age

 def display(self):

 print("Name is :", self.name)

 print("Age is :", self._age)

person = Person('Srinivas', 30)

accessing using class method

person.display()

accessing directly from outside

print("Name is :", person.name)

print("Age is :", person._age)

Output:

Name is : Srinivas

Age is : 30

Name is : Srinivas

Age is : 30

Note: It’s clear that the variable access is unchanged. But can we do anything to

really make it private? Let’s have a look further.

Using Double Underscores:

 If you want to make class members i.e. methods and variables private, then

you should prefix them with double underscores.

 But Python offers some sort of support to the private modifier. This

mechanism is called "Name mangling".

 With this, it is still possible to access the class members from outside it.

Name Mangling:

In Python, any identifier with __Var is rewritten by a python interpreter as

_Classname__Var, and the class name remains as the present class name.

This mechanism of changing names is called "Name Mangling" in Python.

In the below example, in Class person, the age variable is changed and it’s prefixed

by leading double underscores.

Syntax: objectName._className__variableName
Example:

class Person:

 def __init__(self, name, age=0):

 self.name = name

 self.__age = age

 def display(self):

 print("Person Name is :",self.name)

 print("Person Age is :",self.__age)

person = Person('Srinivas', 30)

accessing using class method

person.display()

accessing directly from outside

print('Trying to access variables from outside the class ')

print("Person Name is :",person.name)

print("Person Age is : ",person.__age) # error

print("Person Age is : ",person._Person__age) # Name Mangling Concept

Output:
Person Name is : Srinivas

Person Age is : 30

Trying to access variables from outside the class

Person Name is : Srinivas

AttributeError: 'Person' object has no attribute '__age'

Note: You can observe that variables are still be accessed using methods, which

is a part of the class. But you cannot access age directly from outside, as it is a

private variable.

Example: Using Name Mangling Concept Accessing the Private variables
class Person:

 def __init__(self, name, age=0):

 self.name = name

 self.__age = age

 def display(self):

 print("Person Name is :",self.name)

 print("Person Age is :",self.__age)

person = Person('Srinivas', 30)

accessing using class method

person.display()

accessing directly from outside

print('Trying to access variables from outside the class ')

print("Person Name is :",person.name)

print("Person Age is : ",person.__age) # error

print("Person Age is : ",person._Person__age) # Name Mangling Concept

Output:
Person Name is : Srinivas

Person Age is : 30

Trying to access variables from outside the class

Person Name is : Srinivas

Person Age is : 30

Using Getter and Setter methods to access private variables:

 If you want to access and change the private variables, accessor (getter)

methods and mutators(setter methods) should be used, as they are part of

Class.

Example:

class Person:

 def __init__(self, name, age=0):

 self.name = name

 self.__age = age

 def display(self):

 print("Person Name is :",self.name)

 print("Person Age is :",self.__age)

 def setAge(self, age):

 self.__age = age

 def getAge(self):

 print("Age is :",self.__age)

person = Person('Srinivas', 30)

#accessing using class method

person.display()

#changing age using setter

person.setAge(35)

person.getAge()

Output:

Person Name is : Srinivas

Person Age is : 30

Age is : 35

Practice Examples:
Q. Creating name and age variables as a normal variables and accessing

from child class

class Person:

 def create(self,name, age):

 self.name = name

 self.age = age

class Employee(Person):

 def display(self):

 print("Employee name is :", self.name)

 print("Employee Age is :", self.age)

employee = Employee()

employee.create('Sachin', 50)

employee.display()

Output:
Employee name is : Sachin

Employee Age is : 50

Q. Creating name and age variables as a Private variables and accessing

from Current class method But not accessing from child class method.

class Person:

 def create(self, name, age):

 self.__name = name

 self.__age = age

 def read(self):

 print("Employee name is :", self.__name)

 print("Employee Age is :", self.__age)

class Employee(Person):

 def display(self):

 print("Employee name is :", self.__name)

 print("Employee Age is :", self.__age)

employee = Employee()

employee.create('Sachin', 50)

employee.read()

employee.display()

Output:

Employee name is : Sachin

Employee Age is : 50

AttributeError: 'Employee' object has no attribute '_Employee__name'

Q.Creating name and age variables as a Private variables and read() method

as a Private method , accessing from Current class private method and

also accessing from child class method using Name Mangling concept.

class Person:

 def create(self,name, age):

 self.__name = name

 self.__age = age

 def __read(self):

 print("Employee name is :", self.__name)

 print("Employee Age is :", self.__age)

class Employee(Person):

 def display(self):

 print("Employee name is :", self._Person__name)

 print("Employee Age is :", self._Person__age)

employee = Employee()

employee.create('Virat',40)

employee.__read() # AttributeError: 'Employee' object has no attribute

'__read'

employee._Person__read() ## Name mangling concept

employee.display()

Output:

Employee name is : Virat

Employee Age is : 40

Employee name is : Virat

Employee Age is : 40

Q. Creating name and age variables as a Private variables and creating

read() method as Private method. Accessing private method read() from

Child class method display() using Name Mangling concept.

class Person:

 def create(self,name, age):

 self.__name = name

 self.__age = age

 def __read(self):

 print("Employee name is :", self.__name)

 print("Employee Age is :", self.__age)

class Employee(Person):

 def display(self):

 print("I am from display() method")

 super()._Person__read()

 # super().__read()

 print("I am from display() method again")

employee = Employee()

employee.create('Virat',40)

employee.display()

Output:

I am from display() method

Employee name is : Virat

Employee Age is : 40

I am from display() method again

Benefits of Encapsulation in Python:

 Encapsulation not only ensures better data flow but also protects the data

from outside sources.

 The concept of encapsulation makes the code self-sufficient.

 It is very helpful in the implementation level, as it prioritizes the ‘how’ type

questions, leaving behind the complexities.

 You should hide the data in the unit to make encapsulation easy and also to

secure the data.

Conclusion:

 Encapsulation in Python is, the data is hidden outside the object definition.

 It enables developers to develop user-friendly experience.

 This is also helpful in securing data from breaches, as the code is highly

secured and cannot be accessed by outside sources.

Car Example:

 We create a class Car which has two methods: drive() and updateSoftware().

 When a car object is created, it will call the private methods

__updateSoftware().

 This function cannot be called on the object directly, only from within the

class.

Example:
class Car:

 def __init__(self):

 self.__updateSoftware()

 def drive(self):

 print('driving')

 def __updateSoftware(self):

 print('updating software')

redcar = Car()

redcar.drive()

redcar.__updateSoftware() # AttributeError: 'Car' object has no

attribute '__updateSoftware'. Did you mean: '_Car__updateSoftware'?

Accessing using Name Mangling Concept

redcar._Car__updateSoftware() # updating software

Output:

updating software

driving

updating software

 Encapsulation prevents from accessing accidentally, but not intentionally.

 The private attributes and methods are not really hidden, they’re renamed

by adding _Car” in the beginning of their name.

 The method can actually be called using redcar._Car__updateSoftware()

Class with private variables:

 Variables can be private which can be useful on many occasions. A private

variable can only be changed within a class method and not outside of the

class.

 Objects can hold crucial data for your application and you do not want that

data to be changeable from anywhere in the code.

An example:
class Car:

 __maxspeed = 0

 __name = ""

 def __init__(self, maxspeed, name):

 self.__maxspeed = maxspeed

 self.__name = name

 def drive(self):

 print('Car Name is : ' + str(self.__name))

 print('Car Driving-maxspeed :' + str(self.__maxspeed))

redcar = Car(200, "Super Car")

redcar.drive()

print()

redcar.__maxspeed = 10 # will not change variable because its private

print("Driving Speed is :",redcar.__maxspeed)

print()

redcar.drive()

print()

bluecar = Car(150, "Tata")

bluecar.drive()

Output:
Car Name is : Super Car

Car Driving-maxspeed :200

Driving Speed is : 10

Car Name is : Super Car

Car Driving-maxspeed :200

Car Name is : Tata

Car Driving-maxspeed :150

setter() methods

 If you want to change the value of a private variable, a setter method is used.

 This is simply a method that sets the value of a private variable.

Example:
class Car:

 __maxspeed = 0

 __name = ""

 def __init__(self):

 self.__maxspeed = 200

 self.__name = "Supercar"

 def drive(self):

 print('driving maxspeed :' + str(self.__maxspeed))

 def setMaxSpeed(self,speed):

 self.__maxspeed = speed

redcar = Car()

redcar.drive()

redcar.setMaxSpeed(320)

redcar.drive()

 Output:

driving maxspeed :200

driving maxspeed :320

 Why would you create them? Because some of the private values you may

want to change after creation of the object while others may not need to be

changed at all.

Encapsulation In Python FAQs :

1) What is Encapsulation in Python?

Encapsulation in Python is the process of wrapping up variables and methods into

a single entity. In programming, a class is an example that wraps all the variables

and methods defined inside it.

2) How can we achieve Encapsulation in Python?

In Python, Encapsulation can be achieved using Private and Protected Access

Members.

For example, using single underscore and double underscore before the variables

or methods.

_name = “Virat”

__name = “Rohit”

3) How can we define a variable as Private?

In Python, Private variables are preceded by using two underscores.

For example: __name = “JS.Rao”

4) How can we define a variable as Protected?

In Python, Protected variables are preceded by using a single underscore.

For example: _name = “Rohit”

