
Introduction to Database Communication using Django
 Database is an important part of every website.

 Generally every website must required database to store the data.

 Database provides communication between Users and Admin of the organization.

 Any website which is using the database(s) then that website is called Database Driven

Website.

 Django is wel-suited to create Database Driven Websites.

 Generally, both admin people and users use the database , like below

Zomato App Working flow Structure

 Admin or manager of the website will store the details of the products in the database

(base_db) and display on the browser.

 Users or Customers will check required product on the browser, if the user finds the

required product then He/She will place an order, this product order data will save in

the another or same database.

 Admin or manager will keep on check the database (order table) for new orders from

the Users or Customers..

 If Admin or manager finds any new order then they will inform to corresponding

Restaurent people to deliver the products to the customers.

 Here, Admin uses base_db to store the products details and order_db used to check the

User orders.

 Users use only order_db to store their orders.

 That means both admin and users are using the database.

Different Databases:

 Django supports all types of databases to use in the website,

 Django supports all major databases like Oracle DB , MySQL DB , SQL Server DB ,

PostGreeSQL DB and also SQLite3 (It is default database in django)

 We configure database details in settings.py file

Configuring Database:

 We have to configure the database details in settings.py file. By default it contains

sqlite3 database settings in settings.py file.

 We are not required to download and install sqlite3 database.

 When ever we are excuting the runserver command then Django will download and

maintain sqlite3 db in project root folders’s location.

For example,

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': BASE_DIR / 'db.sqlite3',
 }
}

Note: If you want to connect to any other major database like MySQL DB then use database
settings like below

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': '8pm_db',
 'USER' : 'root',
 'PASSWORD' : 'root',
 }
}

Connecting to MySQL DB :

If we want use or connect any database with Python or Django then we have to install the

Corresponding module by using PIP command like bellow

C:\Users\Lenovo> pip install pymysql

Create a new Project to connect to the MySQL
Step 1: Create a Project name like ModelProject

Step 2: Create a Application name like ModelApp

Step 3: Open mysql command prompt and create database name with 8pm_db

mysql > create database 8pm_db;

Step 4: Open settings.py file and

1) Add our application name inside INSTALLED_APPS section
For example,

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'ModelApp', # our appName

]

 2) Configure the mysql db details inside DATABASE section.

For example

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': '8pm_db',
 'USER' : 'root',
 'PASSWORD' : 'root',
 }
}

When ever you specify the database details in Python or Django, It creates a connection like

bellow.

Testing Connection :

 If we want to know whether we specified proper database details or not in the

settings.py file then we can execute the connection by using cursor().

 If cursor() is returns any Error that means we did not specify the database details

properly in settings.py file.

 If cursor() did not return any Error that means we have given all database details

properly in settings.py file.

Note: The connection is availble in django.db, so we have to import the "connection" object

and execute the connection by using cursor()

Now we will goto python shell to verify the connection object , click on terminal, run the

following command

E:\django8pm\modelpro> python manage.py shell

>>> from django.db import connection

>>> c = connection.cursor()

>>>

NOTE: Here cursor() did not return any Error that means we have given all database details

properly in settings.py file.

If connection is created properly then we can create a model in models.py file.

