
Top Answers to Django Interview Questions 
 

1. What is Django? 

Django is a server-side web application development framework written in Python. 

2. Which architectural pattern does Django follow? 

Django follows the Model View Template (MVT) architecture. MVT is a slight variation of the Model 

View Controller (MVC) architecture. 

3. What is the difference between a project and an app in Django? 

In Django, a project is the entire application and an app is a module inside the project that deals with 

one specific requirement. E.g., if the entire project is an ecommerce site, then inside the project we 

will have several apps, such as the retail site app, the buyer site app, the shipment site app, etc. 

4. What is Django Admin Interface? 

Django comes with a fully customizable in-built admin interface, which lets us see and make changes 

to all the data in the database of registered apps and models. To use a database table with the admin 

interface, we need to register the model in the admin.py file. 

5. Explain Django’s Request/Response Cycle. 

In the Request/Response Cycle, first, a request is received by the Django server. Then, the server 

looks for a matching URL in the urlpatterns defined for the project. If no matching URL is found, then 

a response with 404 status code is returned. If a URL matches, then the corresponding code in the 

view file associated with the URL is executed to build and send a response. 

6. What is a model in Django? 

A model is a Python class in Django that is derived from the django.db.models.Model class. A model is 

used in Django to represent a table in a database. It is used to interact with and get results from the 

database tables of our application. 

7. What are migrations in Django? 

A migration in Django is a Python file that contains changes we make to our models so that they can 

be converted into a database schema in our DBMS. So, instead of manually making changes to our 

database schema by writing queries in our DBMS shell, we can just make changes to our models. 

Then, we can use Django to generate migrations from those model changes and run those migrations 

to make changes to our database schema. 

8. What are views in Django? 

A view in Django is a class and/or a function that receives a request and returns a response. A view 

is usually associated with urlpatterns, and the logic encapsulated in a view is run when a request to 

the URL associated with it is run. A view, among other things, gets data from the database using 

models, passes that data to the templates, and sends back the rendered template to the user as an 

HttpResponse. 

 

 

https://intellipaat.com/blog/tutorial/python-tutorial/python-modules/
https://intellipaat.com/blog/tutorial/python-tutorial/python-classes-and-objects/


9. What is the use of the include function in the urls.py file in Django? 

As in Django there can be many apps, each app may have some URLs that it responds to. Rather 

than registering all URLs for all apps in a single urls.py file, each app maintains its own urls.py file, 

and in the project’s urls.py file we use each individual urls.py file of each app by using the include 

function. 

10. Why is Django called a loosely coupled framework? 

Django is called a loosely coupled framework because of its MVT architecture, which is a variant of 

the MVC architecture. It helps in separating the server code from the client-related code. Django’s 

models and views take care of the code that needs to be run on the server like getting records from 

database, etc., and the templates are mostly HTML and CSS that just need data from models passed 

in by the views to render them. Since these components are independent of each other, Django is 

called a loosely coupled framework. 

11. What is Django ORM? 

ORM stands for Object-relational Mapper. Instead of interacting with the database by writing raw SQL 

queries and converting the data returned from the query into a Python object, ORM allows us to 

interact with the database using objects of our model class. So, we just interact with our models and 

ORM converts these changes into SQL queries based on the database we are using, e.g., SQLite. 

12. How do templates work in Django? 

In Django, templates are used to dynamically generate web content. Django’s templating engine 

handles templating that involves parsing, processing, and converting the template into an 

HttpResponse to return back to the client. These templates are by default written in Django 

Templating Language (DTL), which allows us to output the dynamic content in the templates based 

on the data passed in by the view. 

13. How do we register a model with Django admin? 

To register a model with Django’s admin interface, we make changes to our apps admin.py file. We 

have to open the admin.py file in the app folder in which our models are. For example, if we have an 

app named ‘polls’ and we wish to register a model named ‘Question’, then we need to open 

‘polls/admin.py’ and import the Question model and write: admin.site.register(Question). This will 

register our Question model with the admin site. 

14. How do we generate a super user in Django? 

In our project folder that contains Django’s manage.py script, we have to open the command prompt 

and type the python manage.py createsuperuser command. Then, we need to enter the username, 

the email, and finally the password, twice (for conformation). This will create a super user for our 

Django project. 

15. Mention some disadvantages of Django. 

Django has the following disadvantages: 

 Django’ modules are bulky. 

 It is completely based on Django ORM. 

https://intellipaat.com/blog/tutorial/python-tutorial/python-modules/


 Components are deployed together. 

 We must know the full system to work with it. 

16. What is Sessions Framework in Django? 

The Sessions framework in Django is used to store arbitrary information about the user on the server 

in the database. This is done because HTTP is a stateless protocol, i.e., it does not store information 

between subsequent requests. Django uses a cookie containing a special session ID to identify each 

browser and its associated session with the site. 

17. What is a cookie in Django? 

A cookie is a small piece of information that is stored in the client browser. It is used to store user’s 

data in a file permanently (or for the specified time). Cookie has its expiry date and time and gets 

removed automatically when it gets expired. Django provides in-built methods to set and fetch 

cookies. 

18. What is a middleware in Django? 

A middleware is a layer in Django’s Request/Response processing pipeline. Each middleware is 

responsible for performing some specific functions on the request and/or response, such as caching, 

gzipping, etc. 

19. What is a Query Set in Django? 

A QuerySet in Django is basically a collection of objects from our database. QuerySets are used by 

the Django ORM. When we use our models to get a single record or a group of records from the 

database, they are returned as QuerySets. 

20. What is Django REST Framework? 

Django REST Framework (DRF) is a Django app and a framework that lets us create RESTful APIs 

rapidly. DRF is especially useful if we have an existing Django web application and we wish to quickly 

generate an API for it. 

21. What is a context in Django? 

A context in Django is a dictionary, in which keys represent variable names and values represent their 

values. This dictionary (context) is passed to the template which then uses the variables to output the 

dynamic content. 

23. What is a Meta Class in Django? 

A Meta class is simply an inner class that provides metadata about the outer class in Django. It 

defines such things as available permissions, associated database table name, singular and plural 

versions of the name, etc. 

24. When should we generate and apply migrations in a Django project and why? 

We should do that whenever we create or make changes to the models of one of the apps in our 

project. This is because a migration is used to make changes to the database schema, and it is 

generated based on our models. 

25. What is serialization in Django? 

Serialization is the process of converting Django models into other formats such as XML, JSON, etc. 

https://intellipaat.com/blog/tutorial/python-tutorial/python-dictionary/
https://intellipaat.com/blog/tutorial/python-tutorial/python-json/


26. What are generic views? 

When building a web application there are certain kind of views that we build again and again, such 

as a view that displays all records in the database (e.g., displaying all books in the books table), etc. 

These kinds of views perform the same functions and lead to repeated code. To solve this issue, 

Django uses class-based generic views. When using generic views, all we have to do is inherit the 

desired class from django.views.generic module and provide some information like model, 

context_object_name, etc. 

27. Which companies use Django? 

Instagram, Disqus, Mozilla, Bitbucket, Spotify, NASA, Eventbrite, etc. 

 

https://intellipaat.com/blog/tutorial/python-tutorial/python-functions/

	Top Answers to Django Interview Questions
	1. What is Django?
	2. Which architectural pattern does Django follow?
	3. What is the difference between a project and an app in Django?
	4. What is Django Admin Interface?
	5. Explain Django’s Request/Response Cycle.
	6. What is a model in Django?
	7. What are migrations in Django?
	8. What are views in Django?
	9. What is the use of the include function in the urls.py file in Django?
	10. Why is Django called a loosely coupled framework?
	11. What is Django ORM?
	12. How do templates work in Django?
	13. How do we register a model with Django admin?
	14. How do we generate a super user in Django?
	15. Mention some disadvantages of Django.
	16. What is Sessions Framework in Django?
	17. What is a cookie in Django?
	18. What is a middleware in Django?
	19. What is a Query Set in Django?
	20. What is Django REST Framework?
	21. What is a context in Django?
	23. What is a Meta Class in Django?
	24. When should we generate and apply migrations in a Django project and why?
	25. What is serialization in Django?
	26. What are generic views?
	27. Which companies use Django?


