
Python Comprehensions Interview Questions

What are list comprehensions in Python?

 List comprehensions provide a concise way to create lists in Python. It consists of brackets

containing an expression followed by a for clause, then zero or more for or if clauses.

 The result will be a new list resulting from evaluating the expression in the context of the for

and if clauses.

Example:

Without list comprehension

squares = []

for x in range(10):

 squares.append(x**2)

With list comprehension

squares = [x**2 for x in range(10)]

print(squares) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

How do you use list comprehensions to filter elements?

 You can include an if statement in the list comprehension to filter elements based on a

condition.

Example:

Filtering even numbers

even_numbers = [x for x in range(10) if x % 2 == 0]

How to Find the squares of numbers from 1 to 10:

squares = [x**2 for x in range(1, 11)]

print(squares)

How to Filter even numbers from a list:

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

even_numbers = [x for x in numbers if x % 2 == 0]

print(even_numbers) # [2, 4, 6, 8, 10]

What are dictionary comprehensions in Python?

 Dictionary comprehensions are similar to list comprehensions but create dictionaries instead.

 They use curly braces {} and key-value pairs.

Example:

Creating a dictionary of squares

squares_dict = {x: x**2 for x in range(5)}

How to Create a dictionary mapping numbers to their squares:

numbers = [1, 2, 3, 4, 5]

squares_dict = {x: x**2 for x in numbers}

print(squares_dict)

Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

How to Count the frequency of characters in a string:

string = "hello world"

char_freq = {char: string.count(char) for char in string}

print(char_freq)

Output: {'h': 1, 'e': 1, 'l': 3, 'o': 2, ' ': 1, 'w': 1, 'r': 1, 'd': 1}

How to Extract vowels from a string:

string = "hello world"

vowels = [char for char in string if char in 'aeiouAEIOU']

print(vowels)

Output : ['e', 'o', 'o']

Flatten a nested list:

nested_list = [[1, 2, 3], [4, 5], [6, 7, 8]]

flattened_list = [item for sublist in nested_list for item in sublist]

print(flattened_list)

Output : [1, 2, 3, 4, 5, 6, 7, 8]

Generate a list of prime numbers:

def is_prime(n):

 if n <= 1:

 return False

 for i in range(2, int(n**0.5) + 1):

 if n % i == 0:

 return False

 return True

primes = [x for x in range(2, 101) if is_prime(x)]

print(primes)

Output: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

Explain the syntax of set comprehensions.

 Set comprehensions are similar to list comprehensions, but they produce sets instead of lists.

 They use curly braces {} like dictionary comprehensions but without key-value pairs.

Example:

Creating a set of unique characters from a string

unique_chars = {char for char in 'hello'}

When would you use generator expressions instead of list comprehensions?

 Generator expressions are used when you want to iterate over a sequence but do not need to

store the entire sequence in memory at once.

 They are memory efficient compared to list comprehensions. Generator expressions use

parentheses () instead of square brackets [].

Example:

Using generator expression

even_numbers_gen = (x for x in range(10) if x % 2 == 0)

Generate squares of numbers from 1 to 10:

squares = (x**2 for x in range(1, 11))

for square in squares:

 print(square)

Output: 1 4 9 16 25 36 49 64 81 100

Filter even numbers from a list using generator comprehensions :

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

even_numbers = (x for x in numbers if x % 2 == 0)

for even_number in even_numbers:

 print(even_number, end=" ")

Output: 2 4 6 8 10

Generate a list of powers of 2:

powers_of_2 = (2**x for x in range(10))

for power in powers_of_2:

 print(power)

Generate uppercase versions of strings in a list:

strings = ["hello", "world", "python"]

uppercase_strings = (s.upper() for s in strings)

for uppercase_string in uppercase_strings:

 print(uppercase_string, end=", ")

Output: HELLO, WORLD, PYTHON,

What is the difference between a list comprehension and a generator expression?

 List comprehensions return a list containing the results, while generator expressions return a

generator object, which generates values lazily as they are needed.

 Generator expressions are more memory efficient, especially for large sequences, as they

produce values on-the-fly rather than storing them all in memory at once.

Explain how you can use compression techniques to handle large data sets

efficiently in Python.

 Compression techniques such as gzip, zlib, or bz2 modules in Python can be used to compress

and decompress large data sets efficiently.

 For instance, you can compress data before storing it and decompress it when needed, which

helps reduce storage space and transfer time, especially when dealing with large volumes of

data.

 These modules provide functions like gzip.compress() and gzip.decompress() to perform

compression and decompression operations.

