
Python Polymorphism Concept:
 The word polymorphism means having many forms.

 Yes, Python support polymorphism.

 If one entity shows more than one behavior then it is called as

Polymorphism.

 Polymorphism is an important feature of class definition in Python that is

utilised when you have commonly named methods across classes or sub

classes.

 Polymorphism can be carried out through inheritance, with sub classes

making use of base class methods or overriding them.

Polymorphism is classified into two types.

1. Method Overloading

2. Method Overriding

Overloading:

Overloading occurs when two or more methods in one class have the same

method name but different parameters.

Synatx:

class Calculation:

 def sum(a,b):

 pass

 def sum(a,b,c,d):

 pass

Example 1:

class A:

 def m1(self,a):

 print(a)

 def m1(self,a,b):

 print(a + b)

 def m1(self, name , age , a):

 print('Name is :' , name)

 print('Age is :' , age)

 print(a)

obj = A()

obj.m1('Avinesh',30,50)

Output:

Name is : Avinesh

Age is : 30

50

Example 3: Polymorphism in Class Methods

class Cat:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def info(self):
 print(f"I am a cat. My name is {self.name}. I am {self.age}
years old.")

 def make_sound(self):
 print("Meow")

class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def info(self):
 print(f"I am a dog. My name is {self.name}. I am {self.age}
years old.")

 def make_sound(self):
 print("Bark")

cat1 = Cat("Kitty", 2.5)
dog1 = Dog("Fluffy", 4)

for animal in (cat1, dog1):
 animal.info()
 animal.make_sound()

Output

I am a cat. My name is Kitty. I am 2.5 years old.
Meow
I am a dog. My name is Fluffy. I am 4 years old.
Bark

Here, we have created two classes Cat and Dog. They share a similar

structure and have the same method names info() and make_sound().

However, notice that we have not created a common superclass or linked

the classes together in any way. Even then, we can pack these two different

objects into a tuple and iterate through it using a common animal variable.

It is possible due to polymorphism.

Python Overriding Concept :
Overriding means having two methods with the same method name and same

parameters (i.e., method signature). One of the method is in the Parent class and

the other method is in the Child class.

Syntax:

class Person:

 def read(self):

 pass

class Employee(Person):

 def read(self):

 pass

Example 1:

class Person:

 def read(self):

 print('Person class read() method')

class Employee(Person):

 def read(self):

 super().read()

 print('Employee class read() method')

e = Employee()

e.read()

Output:

Person class read() method

Employee class read() method

Operator Overloading Concept:
 Operator overloading refers to the ability to define an operator to work in a

different manner depending upon the type of operand it is used with.

 The operator + is performing defferent behaviours based on operands values

like strings and numeric values.

Example 1: Polymorphism in addition operator

We know that the + operator is used extensively in Python programs. But, it does

not have a single usage.

For integer data types, + operator is used to perform arithmetic addition

operation.
num1 = 1
num2 = 2
print(num1+num2)

Hence, the above program outputs 3.

Similarly, for string data types, + operator is used to perform concatenation.
str1 = "Python"

str2 = "Programming"

print(str1+" "+str2)

As a result, the above program outputs Python Programming.

Here, we can see that a single operator + has been used to carry out different

operations for distinct data types. This is one of the most simple occurrences of

polymorphism in Python.

Function Polymorphism in Python

There are some functions in Python which are compatible to run with multiple data types.

One such function is the len() function. It can run with many data types in Python. Let's

look at some example use cases of the function.

Example 2: Polymorphic len() function

print(len("Programiz"))

print(len(["Python", "Java", "C"]))

print(len({"Name": "John", "Address": "Nepal"}))

Output:

9

3

2

Here, we can see that many data types such as string, list, tuple, set, and dictionary can

work with the len() function. However, we can see that it returns specific information about

specific data types.

Example:

function overloading

def f1(a,b):

 print(a*b)

def f1(a,b,c):

 print(a+b-c)

f1(10,20,5)

Output:

Example:

def add(datatype,*args):

 if datatype=='int':

 result = 0

 if datatype=='str':

 result = ' '

 for x in args:

 result = result + x

 print(result)

add('int',5,6)

add('str', 'Srinivas', 'hello')

add('int',20,30,40,50)

Output:

"dispatch" Decorator in Python:

A Dispatch decorator is used to select between different implementations of the

same abstract method based on the signature, or list of types.

If you want to use dispatch() decorator then we need to install "multipledispatch"

third party module using pip command.

cmd> pip install multipledispatch

Note: After installing "multipledispatch" module then we need to import

"dispatch" decorator to executing perticular method with different parameters.

Example:

from multipledispatch import dispatch

@dispatch(int,int)

def product(a,b):

 result = a * b

 print(result)

@dispatch(int,int,int)

def product(a,b,c):

 result = a * b * c

 print(result)

@dispatch(str,str)

def product(a,b):

 restlt = a + ' '+ b

 print(restlt)

product(10,20)

product(10,20,10)

product('Hello','Rumi')

How to send class object as a input to the function calling?

Overriding:

Example:

class Tomato:

 def type(self):

 print('vegetable')

 def color(self):

 print('It looks like Red')

class Apple():

 def type(self):

 print('Fruit')

 def color(self):

 print('It looks like Red and green')

def func(obj):

 obj.type()

 obj.color()

t = Tomato()

a = Apple()

func(t)

func(a)

Python program to demonstrate dispatch decorator

from multipledispatch import dispatch

@dispatch(int)

def func(x):

 return x * 2

@dispatch(float)

def func(x):

 return x / 2

Driver code

print(func(2))

print(func(2.0))

Output:

4

1.0

Practice Examples:

Example 1:
class Person:

 c = 40

 def result(self):

 self.a = 10

 self.b = 20

 print('Person class result() method')

 print("The result is :", self.a + self.b)

 print("The result is :", p.a + p.b)

 # print("The result is :", Person.a + Person.b) # instance variable

class Employee(Person):

 def result(self):

 print('Employee class result() 1st time')

 # super().result()

 print("The result is :",p.a * p.b)

 # print("The result is :",self.a * self.b)

 # print("The result is :",Person.a * Person.b) # instance variables

 print('Employee class result() method 2nd time')

p = Person()

p.result()

e = Employee()

e.result()

print()

print(p.a) # instance variables

print(p.b) # instance variables

#print(Person.a) --->> error

#print(Person.b) --->> error

class variables

print(Person.c)

print(p.c)

Output:

Example 2:
Identifying the Object and display value.

from multipledispatch import dispatch
@dispatch(object)
def add(x):
 if type(x)==list:
 print("List Object is :",x)

 elif type(x)==tuple:
 print("Tuple Object is :",x)

 elif type(x)==set:
 print("Set Object is :",x)
 else:
 print(x)
add((10,20,30))

Output:

	Example 3: Polymorphism in Class Methods
	Example 1: Polymorphism in addition operator
	Function Polymorphism in Python
	Example 2: Polymorphic len() function

