
Python Abstract Concept:
 Today here, we are going to discuss the concept of Abstraction in Python for

the Object-Oriented Programming approach.

 Basically, Abstraction focuses on hiding the internal implementations of a

process or method from the user.

 In this way, the user knows what he is doing but not how the work is being

done.

 Let us dig a bit deeper into the topic to find its importance in real life and

programming.

What is Abstraction in Python?

 In Object Oriented Programming, Inheritance, Polymorphism and

Encapsulation go hand in hand. But Abstraction is also an essential element

of OOP.

 For example, people do not think of a car as a set of thousands of individual

parts.

 Instead they see it as a well-defined object with its own unique behavior.

 This abstraction allows people to use a car to drive without knowing the

complexity of the parts that form the car.

 They can ignore the details of how the engine transmission, and braking

systems work.

 Instead, they are free to utilize the object as a whole.

 A powerful way to manage abstraction is through the use of hierarchical

classification.

 This allows us to layer the semantics of complex systems, breaking them into

more manageable pieces.

 From the outside, a car is a single object. Once inside, you see that the car

consists of several subsystems: steering, brakes, sound system, seat belts,

etc.

 In turn, each of these subsystems is made up of smaller units.

 The point is that we manage the complexity of the car (or any other complex

system) through the use of hierarchical abstractions.

 This can also be applied to computer programs using OOP concepts. This is

the essence of object-oriented programming.

Steps to Create Abstract Classes and Methods in Python:

 To declare/create an Abstract class, we firstly need to import the "abc"

module.

 This "abc" module contains "ABC" class (i.e, Abstract Base Class) and

"abstractmethod" decorator.

 We can create userdefined abstract class by using predefined abstract class.

 Create required abstract methods by using "abstractmethod" decorator with

@ symbol on top of methods.

 Any classes which contains abstract methods then called as abstract classes.

 We can not instanciate/create objects for abstract classes.

 If we are triying to create objects for abstract classes then it throws

exception like

TypeError: Can't instantiate abstract class Sample with abstract methods task

 Any method which is just define/declared structure with out body

implimentation statements and contains @abstractmethod decorator on top

of it then called as abstract method.

 Any class which contains all abstract methods implimentations properly then

that class is called as "Concrete" class.

 We can create objects for Concrete class and we can access members of

class.

Let us look at an example.

Example:

from abc import ABC, abstractmethod

class abs_class(ABC):

 #abstractmethod

 def m1(self):

 =====

 Here, abs_class is the abstract class inside which abstract methods or any

other sort of methods can be defined.

 As a property, abstract classes can have any number of abstract methods and

any number of other methods.

For example we can see below:

from abc import ABC, abstractmethod

class abs_class(ABC):

 #normal method

 def method(self):

 #method definition

 @abstractmethod

 def Abs_method(self):

 #Abs_method definition

--->> Here, method() is normal method whereas Abs_method() is an abstract

method implementing @abstractmethod from the abc module.

Python Abstraction Example:

Now that we know about abstract classes and methods, let’s take a look at an

example which explains Abstraction in Python.

Code:

from abc import ABC, abstractmethod

class Absclass(ABC):

 def print(self,x):

 print("Passed value: ", x)

 @abstractmethod

 def task(self):

 print("We are inside Absclass task")

class test_class(Absclass):

 def task(self):

 print("We are inside test_class task")

class example_class(Absclass):

 def task(self):

 print("We are inside example_class task")

#object of test_class created

test_obj = test_class()

test_obj.task()

test_obj.print(100)

#object of example_class created

example_obj = example_class()

example_obj.task()

example_obj.print(200)

print("test_obj is instance of Absclass? ", isinstance(test_obj, Absclass))

print("example_obj is instance of Absclass? ", isinstance(example_obj, Absclass))

Output:

We are inside test_class task

Passed value : 100

We are inside example_class task

Passed value : 200

test_obj is instance of Absclass? True

example_obj is instance of Absclass? True

Exaplantion:

 Here, Absclass is the abstract class that inherits from the ABC class from the

abc module.

 It contains an abstract method task() and a normal print() method which are

visible by the user.

 Two other classes inheriting from this abstract class are test_class and

example_class.

 Both of them have their own task() method (extension of the abstract

method).

 After the user creates objects from both the test_class and example_class

classes and invoke the task() method for both of them, the hidden definitions

for task() methods inside both the classes come into play.

 These definitions are hidden from the user. The abstract method task() from

the abstract class Absclass is actually never invoked.

 But when the print() method is called for both the test_obj and example_obj,

the Absclass’s print() method is invoked since it is not an abstract method.

Note: We cannot create instances of an abstract class. It raises an Error.

Example:

Q. Accessing abstract class in multiple concrete classes and implementing its

methods.?

from abc import ABC,abstractmethod

class A(ABC):

 def __init__(self,value):

 self.value = value

 @abstractmethod

 def add(self):

 pass

 @abstractmethod

 def sub(self):

 pass

 # normal method

 def mul(self):

 print("The Multiplication is :",self.value * 10)

class B(A):

 def add(self):

 print("The Addition is :",self.value + 10)

class C(B):

 def sub(self):

 print("The Subtraction is :",self.value - 10)

class D(A):

 def add(self):

 print('The Addition is:', self.value + 20)

 def sub(self):

 print('The Subtraction is:', self.value - 20)

#b = B()

cobj = C(100)

cobj.add()

cobj.sub()

cobj.mul()

d = D(200)

d.add()

d.sub()

d.mul()

Output:

The Addition is : 110

The Subtraction is : 90

The Multiplication is : 1000

The Addition is: 220

The Subtraction is: 180

The Multiplication is : 2000

Example:

Q. Create abstract class constructor and access it in child classes

from abc import ABC,abstractmethod

class Cal(ABC):

 def __init__(self,value):

 self.value = value

 @abstractmethod

 def add(self):

 pass

 @abstractmethod

 def sub(self):

 pass

class C(Cal):

 def add(self):

 print(self.value + 10)

 def sub(self):

 print(self.value - 10)

cobj = Cal()

cobj = C(100)

cobj.add()

cobj.sub()

Output:

110

90

Example:

import abc

class Shape(metaclass=abc.ABCMeta):

 @abc.abstractmethod

 def area(self):

 pass

class Rectangle(Shape):

 def __init__(self, x,y):

 self.l = x

 self.b=y

 def area(self):

 return self.l * self.b

r = Rectangle(10,20)

print ('area: ',r.area())

Output:

area: 200

