Questions to Test Your Knowledge of Python Lists

1. Check if a list contains an element

The in operator will return True if a specific element is in a list.

1i = [1,2,3,'a','b','c']'a' in 1i #=> True

2. How to iterate over 2+ lists at the same time

You can zip () lists and then iterate over the zip object. A zip object is an iterator

of tuples.

Below we iterate over 3 lists simultaneously and interpolate the values into a

string.
name = ['Snowball', 'Chewy', 'Bubbles', 'Gruff']
animal = ['Cat', 'Dog', 'Fish', 'Goat']

age = [1, 2, 2, 6]
z = zip(name, animal, age)
z #=> <zip at 0x111081e48>

for name,animal,age in z:
print ("%$s the %s is %$s" % (name, animal, age))

> Snowball the Cat is 1
=> Chewy the Dog is 2
>
>

Bubbles the Fish is 2
Gruff the Goat is 6

3. When would you use a list vs dictionary?

Lists and dictionary generally have slightly different use cases but there is some

overlap.



The general rule of algorithm questions I've come to is that if you can use

both, use a dictionary because lookups are faster.

List

Use a list if you need to store the order of something.

Ie: id’s of database records in the order they’ll be displayed.

ids = [23,1,7,9]

While both lists and dictionaries are ordered as of python 3.7, a list allows
duplicate values while a dictionary doesn’t allow duplicate keys.

Dictionary:

Use a dictionary if you want to count occurrences of something. Like the number
of pets in a home.

pets = {'dogs':2,'cats':1,'fish':5}

Each key can only exist once in a dictionary. Note that keys can also be other
immutable data structures like tuples. Ie: {('a',1):1, ('b',2):1}.

4. |s a list mutable?

Yes. Notice in the code below how the value associated with the same identifier in
memory has not changed.

x = [1]

print (id(x),':',x) #=> 4501046920 : [1]
x.append (5)

x.extend ([6,7])

print (id(x),"':',x) #=> 4501046920 : [1, 5, 6, 7]

5. Does a list need to be homogeneous?

No. Different types of object can be mixed together in a list.



6. What is the difference between append and extend?

.append () adds an object to the end of a list.
a=1[1,2,3]
a.append (4)

a #=> [1, 2, 3, 4]

This also means appending a list adds that whole list as a single element, rather
than appending each of its values.

a.append ([5,6])
a #:> [l/ 2/ 3/ 4/ [51 6]]

.extend () adds each value from a 2nd list as its own element. So extending a list
with another list combines their values.

b =1[1,2,3]
b.extend ([5,6])
b #=> [1, 2, 3, 5, 6]

7. Do python lists store values or pointers?

Python lists don’t store values themselves. They store pointers to values stored

elsewhere in memory. This allows lists to be mutable.

Here we initialize values 1 and 2, then create a list including the values 1 and 2.

print( id(1l) ) #=> 4438537632
print ( id(2) ) #=> 4438537664
a = 1[1,2,3]

print( id(a) ) #=> 4579953480
print ( id(al0]) ) #=> 4438537632

print ( id(a[l]) ) #=> 4438537664



Notice how the list has its own memory address. But 1 and 2 in the list point to the
same place in memory as the 1 and 2 we previously defined.

8. What does “del” do?

del removes an item from a list given its index.

Here we’ll remove the value at index 1.

del all]

a #:> [IWV’ vy|, IZI]

Notice how de1 does not return the removed element.

9. What is the difference between “remove” and “pop”?

.remove () Temoves the first instance of a matching object. Below we remove the

first b.
a: [lal, laV, Vb’, Vb’, 'C’, 'C’]

a.remove ('b')

a#=> ['a', lal, lbl, 'C‘, 'C‘]

.pop () Temoves an object by its index.

The difference between pop and de1 is that pop returns the popped element. This

allows using a list like a stack.

a = [lal, lal, lbl, lbl, 'C', lcl]
a.pop(4) #=> 'c'
a #:> [lal, lal, lbl, lbl, lcl]

By default, pop removes the last element from a list if an index isn’t specified.



10. Remove duplicates from a list

If you're not concerned about maintaining the order of a list, then converting to a

set and back to a list will achieve this.

list (set (11)) #=> [1, 2, 3]

11. Find the index of the 1st matching element

For example, you want to find the first “apple” in a list of fruit. Use

the .index () method.
fruit = ['pear', 'orange', 'apple', 'grapefruit', 'apple', 'pear']
fruit.index ('apple') #=> 2

fruit.index ('pear') #=> 0

12. Remove all elements from a list

Rather than creating a new empty list, we can clear the elements from an existing

list with .c1ear ().

fruit = ['pear', 'orange', 'apple'lprint( fruit )
#=> ['pear', 'orange', 'apple']

print ( id(fruit) ) #=> 4581174216

fruit.clear ()

print ( fruit ) #=> []

print ( id(fruit) ) #=> 4581174216
Or with de1.

fruit = ['pear', 'orange', 'apple']

print( fruit )



#=> ['pear', 'orange', 'apple']
print ( id(fruit) ) #=> 4581166792
del fruitl[:]

print ( fruit ) #=> []

print ( id(fruit) ) #=> 4581166792

13. Iterate over both the values in a list and their indices
enumerate () adds a counter to the list passed as an argument.

Below we iterate over the list and pass both value and index into string

interpolation.

grocery list = ['flour', 'cheese', 'carrots']
for idx , val in enumerate(grocery list):

(o)

print ("$s: $s" % (idx, wval))
#=> 0: flour
#=> 1: cheese
#=> 2: carrots

14. How to concatenate two lists

The + operator will concatenate 2 lists.
one = ['a', lbl, lcl]
two = [1, 2, 3]

one + two #=> ['a', 'b', 'c¢', 1, 2, 3]

15. How to manipulate every element in a list with list comprehension

Below we return a new list with 1 added to every element.
1i = [0,25,50,100]
[1+1 for 1 in 1i]

#=> [1, 26, 51, 101]



16. Count the occurrence of a specific object in a list

The count () method returns the number of occurrences of a specific object. Below

we return the number of times the string, “risn” exists in a list called pets.
pets = ['dog', 'cat','fish', "fish', 'cat']
pets.count ('fish')

#=> 2
17. How to shallow copy a list?

.copy () can be used to shallow copy a list.

Below we create a shallow copy of roundi, assign it to a new name, round2, and

then remove the string sonny chiba.

For example:
roundl = ['chuck norris', 'bruce lee', 'sonny chiba']

round2 = roundl.copy ()

round2.remove ('sonny chiba')

print (roundl)

#=> ['chuck norris', 'bruce lee', 'sonny chiba']

print (round2) #=> ['chuck norris', 'bruce lee']

18. Why create a shallow copy of a list?

Building off the previous example, modifying round2 will modify round1 if we don’t

create a shallow copy.

roundl ['chuck norris', 'bruce lee', 'sonny chiba']

round2 = roundl

round2.remove ('sonny chiba')

print (roundl) #=> ['chuck norris', 'bruce lee']



print (round2) #=> ['chuck norris', 'bruce lee']

Without a shallow copy, round1l and round2 are just names pointing to the same list
in memory. That’s why it appears that changing the value of one changes the value
of the other.

19. How to deep copy a list?
For this we need to import the copy module, then call copy.deepcopy ().

Below we create a deep copy of a list, round1 called round2, update a value

in round2, then print both. In this case, round1 isn’t affected.

roundl = [
['"Arnold', 'Sylvester', 'Jean Claude'],
['Buttercup', 'Bubbles', 'Blossom']

]

import copy

round2 = copy.deepcopy (roundl)

round2[0] [0] = 'Jet Lee'

print (roundl)

#=> [['Arnold', 'Sylvester', 'Jean Claude'], ['Buttercup', 'Bubbles',
'Blossom'] ]

print (round?2)

#=> [['Jet Lee', 'Sylvester', 'Jean Claude'], ['Buttercup',6 'Bubbles',
'Blossom'] ]

Above we can see that changing the nested array in round2 did not update rounda.

20. What is the difference between a deep copy and a shallow copy?

Building off the previous example, creating a shallow copy and then modifying it

would have affected the original list..

roundl = [
['Arnold', 'Sylvester', 'Jean Claude'],
['Buttercup', 'Bubbles', 'Blossom']



import copy

round2 = roundl.copy ()

round2[0] [0] = 'Jet Lee'

print (roundl)

#=> [['Jet Lee', 'Sylvester', 'Jean Claude'], ['Buttercup',6 'Bubbles',

'Blossom'] ]

print (round?2)

#=> [['Jet Lee', 'Sylvester', 'Jean Claude'], ['Buttercup', 'Bubbles',
'Blossom'] ]
Why does this happen?

Creating a shallow copy does create a new object in memory, but it’s filled with the

same references to existing objects that the previous list has.

Creating a deep copy creates copies of the original objects and points to these new
versions. So the new list is completely unaffected by changes to the old list and

vice versa.

21. What is the difference between a list and a tuple.

Tuples cannot be updated after creation. Adding/removing/updating an existing

tuple requires creating a new tuple.
Lists can be modified after creation.

Tuples often represent an object like a record loaded from a database where

elements are of different datatypes.

Lists are generally used to store an ordered sequence of a specific type of object

(but not always).

Both are sequences and allow duplicate values.



22. Return the length of a list

len () can returns the length of a list.

But note it counts top level objects, so a nested list of several integers will only be

counted as a single object. Below, 1i has a length of 2, not 5.

1i = [[112]1 [3/415]]
len(1i)

#=> 2

23. What is the difference between a list and a set?

While a list is ordered, a set is not. That’s why using set to find unique values in a

list, like 1ist ( set (13, 3, 2, 11) ) losesthe order.
While lists are often used to track order, sets are often used to track existence.

Lists allow duplicates, but all values in a set are unique by definition.

24. How to check if an element is not in a list?

For this we use the in operator, but prefix it with not.
1i = [1,2,3,4]
5 not in 1i #=> True

4 not in 1li #=> False

25. Multiply every element in a list by 5 with the map function

.map () allows iterating over a sequence and updating each value with another

function.



map () returns a map object but I've wrapped it with a list comprehension so we can

see the updated values.

def multiply 5 (val):
return val * 5

25. Multiply every element in a list by 5 with the map function

.map () allows iterating over a sequence and updating each value with another

function.

map () returns a map object but I've wrapped it with a list comprehension so we can

see the updated values.

def multiply 5 (val):
return val * 5

a = [10,20,30,40,50]
[val for val in map (multiply 5, a)]

#=> [50, 100, 150, 200, 250]

26. Combine 2 lists into a list of tuples with the zip function

zip () combines multiple sequences into an iterator of tuples, where values at the

same sequence index are combined in the same tuple.

alphabet

Il
O]
o
Q

integers = [1, 2, 3]

list (zip (alphabet, integers))

27. Insert a value at a specific index in an existing list
The insert () method takes an object to insert and the index to insert it at.
1i = [Val, le, ICI, 'd', lel]

li.insert (2, 'HERE')1li #=> ['a', 'b', 'HERE', 'c', 'd', 'e']



Note that the element previously at the specified index is shifted to the right, not

overwritten.

28. Subtract values in a list from the first element with the reduce function
reduce () needs to be imported from functools.

Given a function, reduce iterates over a sequence and calls the function on every
element. The output from the previous element is passed as an argument when

calling the function on the next element.
from functools import reduce

def subtract(a,b):
return a - b

numbers = [100,10,5,1,2,7,5]

reduce (subtract, numbers) #=> 70

Above we subtracted 10, 5, 1, 2, 7 and 5 from 100.

29. Remove negative values from a list with the filter function

Given a function, riiter () will remove any elements from a sequence on which

the function doesn’t return True.

Below we remove elements less than zero.

def remove negatives (x):
return True if x >= 0 else False

a = [-10, 27, 1000, -1, 0O, -30]
[x for x in filter(remove negatives, a)]

#=> [27, 1000, O]



30. Convert a list into a dictionary where list elements are keys

For this we can use a dictionary comprehension.
li = ['"The', 'quick', 'brown', 'fox', 'was', 'quick']
d = {k:1 for k in 1i}

d #=> {'The': 1, 'quick': 1, 'brown': 1, 'fox': 1, 'was': 1}

31. Modify an existing list with a lambda function

Let’s take the previous map function we wrote and turn it into a one-liner with

d lambda.
a = [10,20,30,40,50]
list (map (lambda val:val*5, a))

#=> [50, 100, 150, 200, 250]

I could have left it as a map object until I needed to iterate over it but I converted

to a list to show the elements inside.

32. Remove elements in a list after a specific index

Using the slice syntax, we can return a new list with only the elements up to a
specific index.

1li = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,10]

1i[:10]

33. Remove elements in a list before a specific index

The slice syntax can also return a new list with the values after a specified index.

1i = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,10]



1i[15:]

#=> [16, 17, 18, 19, 10]

34. Remove elements in a list between 2 indices

Or between two indices.
1i = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,10]
1i[12:17]

#=> [13, 14, 15, 16, 17]

35. Return every 2nd element in a list between 2 indices
Or before/after/between indices at a specific interval.

Here we return every 2nd value between the indices 10 and 16 using the slice

syntax.
1i = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,10]
1i[10:16:2]

#=> [11, 13, 15]

36. Sort a list of integers in ascending order

The sort () method mutates a list into ascending order.
1i = [10,1,9,2,8,3,7,4,6,5]1i.sort ()

1i #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

37. Sort a list of integers in descending order

It’s also possible to sort in descending order with sort () by adding the

argument reverse=True.



li = [10,1,9,2,8,3,7,4,6,5]
li.sort (reverse=True)

1i #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

38. Filter even values out of a list with list comprehension

You can add conditional logic inside a list comprehension to filter out values

following a given pattern.

Here we filter out values divisible by 2.
1i = [1,2,3,4,5,6,7,8,9,10]

[i1 for 1 in 11 if 1 % 2 != 0]

#=> [1, 3, 5, 7, 9]

39. Count occurrences of each value in a list

One option is to iterate over a list and add counts to a dictionary. But the easiest

option is to import the counter class from coliections and pass the list to it.
from collections import Counter

11 = ['blue', 'pink', 'green', 'green', 'yellow', 'pink', 'orange']
Counter (11i)

#=> Counter ({'blue': 1, 'pink': 2, 'green': 2, 'yellow': 1, 'orange': 1})

40. Get the first element from each nested list in a list

A list comprehension is well suited for iterating over a list of other objects and

grabbing an element from each nested object.
1li = [[1,2,31,04,5,61,17,8,91,110,11,12],[13,14,15]]

[1[0] for i in 1i] #=> [1, 4, 7, 10, 13]



41. What is the time complexity of insert, find and delete for a list?

Insert is O(n). If an element is inserted at the beginning, all other elements
must be shifted right.

Find by index is O(1). But find by value is O(n) because elements need to be

iterated over until the value is found.

Delete is O(n). If an element is deleted at the beginning, all other elements must
to be shifted left.

42. Combine elements in a list into a single string.

This can be done with the j0in () function.
1i = ['The', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']
' '.Join(1i)

#=> 'The quick brown fox jumped over the lazy dog'

43. What’s the affect of multiplying a list by an integer?

Multiplying a list by an integer is called multiple concatenation and has the same

affect as concatenating a list to itself n-times.

Below we multiple a list by 5.

[VaV,lbl] * 5

This is the same as.
['a',lbl] _I_ [la',lbl] _I_ [la|,|bl] _I_ ['a',|b|] _I_ [la',lbl]

#:> [lal’ le’ Val, lbl, la|, 'b', lal, lbl, 'a', lbl]



44. Use the “any” function to return True if any value in a list is divisible by
2

We can combine any () with a list comprehension to return rrue if any values in the

returned list evaluate to True.

Below the 1st list comprehension returns rrue because the list has a 2 in it, which

is divisible by 2.

1il = [1,2,3]

1liz2 = [1,3]

any(i % 2 == 0 for i in 1il) #=> True
any(i % 2 == 0 for i in 1i2) #=> False

45. Use the “all” function to return True if all values in a list are negative

Similar to the any () function, a11 () can also be used with a list comprehension to

return True only if all values in the returned list are True.

1il1 = [2,3,4]

1i2 = [2,4]

all(i % 2 == 0 for i in 1il) #=> False
all(i % 2 == 0 for 1 in 1i2) #=> True

46. Can you sort a list with “None” in it?

You cannot sort a list with none in it because comparison operators (used

by sort ()) can’t compare an integer with none.
1i = [10,1,9,2,8,3,7,4,6,None]
li.sort ()

1i #=> TypeError: '<' not supported between instances of 'NoneType' and 'int'



47. What kind of copy would the list constructor create from an existing
list?

The list constructor creates a shallow copy of a passed in list. That said, this is less
pythonic than using . copy ().
1il = ['a', 'b"]

1i2

list (1il)
li2.append('c')print (1il) #=> ['a', 'b']

print (1i2) #=> ['a', 'b', 'c']

48. Reverse the order of a list

A list can be mutated into reverse order with the reverse () method.
1i = [1,2,3,4,5,6,7,8,9,10]
li.reverse ()

1i #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Note that this mutates the object instead of returning a new object.

49. What is the difference between reverse and reversed?

reverse () reverses the list in place. reversed () returns an iterable of the list in

reverse order.
1i = [1,2,3,4,5,6,7,8,9,10]

list (reversed (1li))

#=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

50. What is the difference between sort and sorted?

sort () modifies the list in place. sorted () returns a new list in reverse order.

1i = [10,1,9,2,8,3,7,4,6,5]



1li.sort ()
1i #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
1li = [10,1,9,2,8,3,7,4,6,5]

sorted(1i) #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

51. Return the minimum value in a list

The min () function returns the minimum value in a list.
1i = [10,1,9,2,8,3,7,4,6,5]

min (11i) #=> 1

52. Return the maximum value in a list

The max () function returns the maximum value in a list.
1i = [10,1,9,2,8,3,7,4,6,5]

max (11) #=> 10

53. Return the sum of values in a list

The sum () function returns the sum of all values in a list.
1i = [10,1,9,2,8,3,7,4,6,5]

sum(1li) #=> 55

54. Use a list as a stack

You can use append () and pop () to treat a list like a stack. Stacks function per LIFO

(last in first out).
stack = []
stack.append ('Jess')
stack.append ('Todd")

stack.append('Yuan')



print (stack) #=> ['Jess', 'Todd', 'Yuan']
print (stack.pop()) #=> Yuan

print (stack) #=> ['Jess', 'Todd']

One benefit of a stack is that elements can be added and removed in O(1) time

because the list does not need to be iterated over.

55. Find the intersection of 2 lists

We can do this by utilizing set () with an ampersand.
1i1 = [1,2,3]

1i2 [2,3,4]1\

set (1il) & set(liz) #=> {2, 3}

56. Find the difference between a set and another set

We can’t subtract lists, but we can subtract sets.
1i1 = [1,2,3]

1i2 = [2,3,4]

set (1il) - set(1i2) #=> {1}

set (1li2) - set (1il) #=> {4}

57. Flatten a list of lists with a list comprehensions

Unlike Ruby, Python3 doesn’t have an explicit flatten function. But we can use list

comprehension to flatten a list of lists.
1i = [[11,2,31,[4,5,6]]

[1 for x in 11 for 1 in x] #=> [1, 2, 3, 4, 5, 6]



58. Generate a list of every integer between 2 values

We can create a range between 2 values and then convert that to alist.

list (range (5,10)) #=> [5, 6, 7, 8, 9]

59. Combine 2 lists into a dictionary

Using zip () and the 1ist () constructor we can combine 2 lists into a dictionary

where one list becomes the keys and the other list becomes the values.

name = ['Snowball', 'Chewy', 'Bubbles', 'Gruff']
animal = ['Cat', 'Dog', 'Fish', 'Goat']dict(zip (name, animal))
#=> {'Snowball': 'Cat', 'Chewy': 'Dog', 'Bubbles': 'Fish', 'Gruff': 'Goat'}

60. Reverse the order of a list using the slice syntax

While we can reverse a list with reverse () and reversed (), it can also be done with

the slice syntax.

This returns a new list by iterating back over the list from end to beginning.

1i = ['a','b',3,4]



	Questions to Test Your Knowledge of Python Lists
	1. Check if a list contains an element
	2. How to iterate over 2+ lists at the same time
	3. When would you use a list vs dictionary?
	List
	Dictionary:
	4. Is a list mutable?
	5. Does a list need to be homogeneous?
	6. What is the difference between append and extend?
	7. Do python lists store values or pointers?
	8. What does “del” do?
	9. What is the difference between “remove” and “pop”?
	10. Remove duplicates from a list
	11. Find the index of the 1st matching element
	12. Remove all elements from a list
	13. Iterate over both the values in a list and their indices
	14. How to concatenate two lists
	15. How to manipulate every element in a list with list comprehension
	16. Count the occurrence of a specific object in a list
	17. How to shallow copy a list?
	18. Why create a shallow copy of a list?
	19. How to deep copy a list?
	20. What is the difference between a deep copy and a shallow copy?
	21. What is the difference between a list and a tuple.
	22. Return the length of a list
	23. What is the difference between a list and a set?
	24. How to check if an element is not in a list?
	25. Multiply every element in a list by 5 with the map function
	25. Multiply every element in a list by 5 with the map function (1)
	26. Combine 2 lists into a list of tuples with the zip function
	27. Insert a value at a specific index in an existing list
	28. Subtract values in a list from the first element with the reduce function
	29. Remove negative values from a list with the filter function
	30. Convert a list into a dictionary where list elements are keys
	31. Modify an existing list with a lambda function
	Using the slice syntax, we can return a new list with only the elements up to a specific index.
	33. Remove elements in a list before a specific index
	34. Remove elements in a list between 2 indices
	35. Return every 2nd element in a list between 2 indices
	36. Sort a list of integers in ascending order
	37. Sort a list of integers in descending order
	38. Filter even values out of a list with list comprehension
	39. Count occurrences of each value in a list
	40. Get the first element from each nested list in a list
	41. What is the time complexity of insert, find and delete for a list?
	42. Combine elements in a list into a single string.
	43. What’s the affect of multiplying a list by an integer?
	44. Use the “any” function to return True if any value in a list is divisible by 2
	45. Use the “all” function to return True if all values in a list are negative
	46. Can you sort a list with “None” in it?
	47. What kind of copy would the list constructor create from an existing list?
	48. Reverse the order of a list
	49. What is the difference between reverse and reversed?
	50. What is the difference between sort and sorted?
	51. Return the minimum value in a list
	52. Return the maximum value in a list
	53. Return the sum of values in a list
	54. Use a list as a stack
	55. Find the intersection of 2 lists
	56. Find the difference between a set and another set
	57. Flatten a list of lists with a list comprehensions
	58. Generate a list of every integer between 2 values
	59. Combine 2 lists into a dictionary
	60. Reverse the order of a list using the slice syntax


