

 DEVOPS
 Mr. RAM

 KUBERNETES OBJECTS

 Kubernetes objects are persistent entities in the Kubernetes system.

Kubernetes uses these entities to represent the state of your cluster.

 Specifically, they can describe:

 What containerized applications are running (and on which nodes)

 The resources available to those applications

 The policies around how those applications behave, such as restart

policies, upgrades, and fault-tolerance.

OBJECT SPEC AND STATUS:

 Every Kubernetes object includes two nested object fields that govern the

object's configuration: object spec & object status.

 For objects that have a spec, you have to set this when you create the object,

providing a description of the characteristics you want the resource to have:

its desired state.

 The status describes the current state of the object, supplied and updated by

the Kubernetes system and its components.

DESCRIBING A KUBERNETES OBJECT:

 When you use the Kubernetes API to create the object (either directly or via

kubectl), that API request must include that information as JSON in the

request body.

 Most often, you provide the information to kubectl in a .yaml file. kubectl

converts the information to JSON when making the API request.

REQUIRED FIELDS:

 In the .yaml file for the Kubernetes object you want to create, you'll need to

set values for the following fields:

 apiVersion: Which version of the Kubernetes API you're using to create

this object

 kind: What kind of object you want to create

 metadata: Data that helps uniquely identify the object, including a name

string, UID, and optional namespace

 spec: What state you desire for the object

 $kubectl apply -f https://k8s.io/examples/application/deployment.yaml

https://k8s.io/examples/application/deployment.yaml

 DEVOPS
 Mr. RAM

IMPERATIVE COMMANDS:

 When using imperative commands, a user operates directly on live objects in

a cluster. The user provides operations to the kubectl command as arguments

or flags.

Run an instance of the nginx container by creating a Deployment object:

$kubectl create deployment nginx --image nginx

Delete the objects defined in two configuration files:

$kubectl delete -f nginx.yaml -f redis.yaml

Update the objects defined in a configuration file by overwriting the live

configuration:

$kubectl replace -f nginx.yaml

OBJECT NAMES AND IDS:

 Each object in your cluster has a Name that is unique for that type of

resource.

 Every Kubernetes object also has a UID that is unique across your whole

cluster.

NAMES:

 A client-provided string that refers to an object in a resource URL, such as

/api/v1/pods/somename.

 Four types of commonly used name constraints for resources.

DNS SUBDOMAIN NAMES:

 Most resource types require a name that can be used as a DNS

subdomain name as defined in RFC 1123.

 This means the name must:

 contain no more than 253 characters

 contain only lowercase alphanumeric characters, '-' or '.'

 start with an alphanumeric character

 end with an alphanumeric character

 DEVOPS
 Mr. RAM

RFC 1123 LABEL NAMES:

 Some resource types require their names to follow the DNS label

standard as defined in RFC 1123.

 This means the name must:

 contain at most 63 characters

 contain only lowercase alphanumeric characters or '-'

 start with an alphanumeric character

 end with an alphanumeric character

RFC 1035 LABEL NAMES:

 Some resource types require their names to follow the DNS label

standard as defined in RFC 1035.

 This means the name must:

 contain at most 63 characters

 contain only lowercase alphanumeric characters or '-'

 start with an alphabetic character

 end with an alphanumeric character

PATH SEGMENT NAMES:

 Some resource types require their names to be able to be safely encoded

as a path segment. In other words, the name may not be "." or ".." and the

name may not contain "/" or "%".

Manifest for a Pod named nginx-demo:

 DEVOPS
 Mr. RAM

NAMESPACES:

 In Kubernetes, namespaces provide a mechanism for isolating groups of

resources within a single cluster.

 Names of resources need to be unique within a namespace, but not across

namespaces.

 Namespace-based scoping is applicable only for namespace objects (e.g.,

Deployments, Services, etc) and not for cluster-wide objects (e.g.,

StorageClass, Nodes, PersistentVolumes, etc).

 Namespaces cannot be nested inside one another and each Kubernetes

resource can only be in one namespace.

 Namespaces are a way to divide cluster resources between multiple users.

KUBERNETES INITIAL NAMESPACES:

Default: The default namespace for objects with no other namespace

Kube-system: The namespace for objects created by the Kubernetes system

Kube-public: This namespace is created automatically and is readable by all

users. This namespace is mostly reserved for cluster usage, in case that some

resources should be visible and readable publicly throughout the whole cluster.

Kube-node-lease: This namespace holds Lease objects associated with each

node. Node leases allow the kubelet to send heartbeats so that the control plane

can detect node failure.

List the current namespaces in a cluster using:

$kubectl get namespace

Create a new Namespace:

$kubectl create namespace dev-ns

$kubectl get namespace

To change namespace:

#kubectl config set-context --current --namespace=dev-ns

 DEVOPS
 Mr. RAM

To set the namespace for a current request, use the --namespace flag:

$kubectl run nginx --image=nginx --namespace=<insert-namespace-here>

$kubectl get pods --namespace=<insert-namespace-name-here>

You can permanently save the namespace for all subsequent kubectl

commands in that context:

$kubectl config set-context --current --namespace=<insert-namespace-here>

$kubectl config view --minify | grep namespace:

To list all namespaces pods:

$kubectl get all --all-namespaces (or) $kubectl get all -A

To list specific namespaes:

#kubectl get all -n dev-ns [to get pods in dev-namespace]

To change namespace:

#kubectl config set-context --current --namespace=dev-ns

#kubectl get pods

To delete a name space:

#kubectl delete namespaces dev-ns

#kubectl get namespaces

 DEVOPS
 Mr. RAM

 LABELS AND SELECTORS:

LABELS:

 Labels are key/value pairs that are attached to objects, such as pods.

 It is used to specify identifying attributes of objects that are meaningful

and relevant.

 Labels can be used to organize and to select subsets of objects.

Example Labels:

Configuration file for a Pod that has two labels environment: production

and app: nginx:

 DEVOPS
 Mr. RAM

LABEL SELECTORS:

 Unlike names and UIDs, labels do not provide uniqueness. In general, we

expect many objects to carry the same label(s).

 Via a label selector, the client/user can identify a set of objects. The label

selector is the core grouping primitive in Kubernetes.

 It supports two types of selectors: equality-based and set-based.

EQUALITY-BASED REQUIREMENT:

 Equality- or inequality-based requirements allow filtering by label keys

and values. Matching objects must satisfy all of the specified label

constraints, though they may have additional labels as well.

 Three kinds of operators are admitted =, ==, != .

$kubectl get po

$kubectl get pods --show-labels

$kubectl get pods -l environment=production

$kubectl get pods -l 'environment in (production)'

$kubectl get pods -l 'environment in (production, development)'

$kubectl get pods -l environment!=production

SET-BASED REQUIREMENT:

 Set-based label requirements allow filtering keys according to a set of

values. Three kinds of

 operators are supported: in, notin and exists (only the key identifier).

environment in (production, qa)

environment notin (backend, frontend)

partition

!partition

$kubectl get pods -l environment=production,tier=frontend

$kubectl get pods -l 'environment in (production),tier in (frontend)'

$kubectl get pods -l 'environment in (production, qa)'

$kubectl get pods -l 'environment,environment notin (frontend)'

 DEVOPS
 Mr. RAM

ANNOTATIONS:

 Annotations are also key-value pairs for connecting non-identifying

metadata with objects.

 These are not used to identify and select objects.

NOTE:

 The keys and the values in the map must be strings. In other words, you

cannot use numeric, boolean, list or other types for either the keys or the

values

The configuration file for a Pod that has the annotation imageregistry:

https://hub.docker.com/:

$kubectl get po

$kubectl describe pod annotations-demo

https://hub.docker.com/

