
                                                                                                                                                                                               DEVOPS 
                                                                                                                                                                                                                       Mr. RAM                                                                                                                  
 

                                                      

 

 

                   

 

 

 

 

 

 

 

 



                                                                                                                                                                                               DEVOPS 
                                                                                                                                                                                                                       Mr. RAM                                                                                                                  
 

 KUBERNETES-VOLUMES: 

 

 Volumes in Kubernetes is a directory which is accessible to the containers in 

a pod. 

 Volumes in Kubernetes allow user to Store Data Outside the Container. 

 Volumes that are created through Kubernetes is not limited to any container. 

It supports any or all the containers deployed inside the pod of Kubernetes. 

 A key advantage of Kubernetes volume is, it supports different kind of 

storage wherein the pod can use multiple of them at the same time 

 

TYPES OF KUBERNETES VOLUMES:  

 

- awsElasticBlockStore  - gcePersistentDisk 

- azureFile    - azureDisk 

- cephfs    - cinder 

- emptyDir    - hostPath 

- fc (fibre channel)   - flocker 

- gitRepo    - glusterfs 

- iscsi     - local  

- nfs      - vsphereVolume....etc 

 

#kubectl explain pod.spec.volumes [To get a type of volumes] 

 

EMPTYDIR:  

 It is a type of volume that is created when a Pod is first assigned to a Node. 

It remains active as long as the Pod is running on that node. 

 The volume is initially empty and the containers in the pod can read and 

write the files in the emptyDir volume. Once the Pod is removed from the 

node, the data in the emptyDir is erased. 

 

 



                                                                                                                                                                                               DEVOPS 
                                                                                                                                                                                                                       Mr. RAM                                                                                                                  
 

Example of single container Configuration: 

apiVersion: v1 

kind: Pod 

metadata: 

  name: emptydir-one-container 

spec: 

  containers: 

  - image: centos:7 

    command: 

      - sleep 

      - "3600" 

    name: test-container 

    volumeMounts: 

    - mountPath: /tmp 

      name: tmp-volume 

  volumes: 

  - name: tmp-volume 

    emptyDir: {} 

 

#kubectl create -f emptydir-pod.yaml 

#kubectl get po 

#kubectl exec -it emptydir-one-container -c test-container /bin/sh 

#kubectl exec -it test-pod --ls -l /tmp/file1 

 

 



                                                                                                                                                                                               DEVOPS 
                                                                                                                                                                                                                       Mr. RAM                                                                                                                  
 

Emptydir in Multiple Containers: 

#vim emptydir-pod-two.yaml 

apiVersion: v1 

kind: Pod 

metadata: 

  name: emptydir-two-containers 

spec: 

  containers: 

  - name: centos1 

    image: centos:7 

    command: 

      - sleep 

      - "3600" 

    volumeMounts: 

      - mountPath: /centos1 

        name: tmp-volume 

  - name: centos2 

    image: centos:7 

    command: 

      - sleep 

      - "3600" 

    volumeMounts: 

      - mountPath: /centos2 

        name: tmp-volume  

   



                                                                                                                                                                                               DEVOPS 
                                                                                                                                                                                                                       Mr. RAM                                                                                                                  
 

volumes: 

    - name: tmp-volume 

      emptyDir: {} 

#kubectl get po 

#kubectl exec -it emptydir-two-containers -c centos1 /bin/bash 

#touch /centos1/aws 

#ls /centos1  

#kubectl exec -it emptydir-two-containers -c centos2 /bin/bash 

#ls /centos2  [we will see aws file here]  

 

HOSTPATH:  

 This type of volume mounts a file or directory from the host node’s 

filesystem into your pod. 

                                     

 

PHYSICAL STORAGE: 

 A physical storage instance that you can use to persist your data. 

 

 



                                                                                                                                                                                               DEVOPS 
                                                                                                                                                                                                                       Mr. RAM                                                                                                                  
 

PERSISTENT VOLUMES (PV): 

 A Persistent Volume (PV) is a piece of storage in the cluster that has been 

provisioned by an administrator or dynamically provisioned using Storage 

Classes. 

 It is a resource in the cluster just like a node is a cluster resource.  

 

PERSISTENTVOLUMECLAIM (PVC): 

 A PersistentVolumeClaim (PVC) is a request for storage by a user. 

 It is similar to a Pod. Pods consume node resources and PVCs consume PV 

resources. 

 Pods can request specific levels of resources (CPU and Memory). 

 Claims can request specific size and access modes (e.g., they can be 

mounted ReadWriteOnce, ReadOnlyMany or ReadWriteMany. 

 

CLUSTER: 

 By default, every cluster is set up with a plug-in to provision file storage.  

 You can choose to install other add-ons, such as the one for block storage.  

 To use storage in a cluster, you must create a persistent volume claim, a 

persistent volume and a physical storage instance. 

 

APP: 

 To read from and write to your storage instance, you must mount the 

persistent volume claim (PVC) to your app.  

 

NOTE: Different storage types have different read-write rules.  

For example, you can mount multiple pods to the same PVC for file storage. 

Block storage comes with a RWO (ReadWriteOnce) access mode so that you 

can mount the storage to one pod only. 

 



                                                                                                                                                                                               DEVOPS 
                                                                                                                                                                                                                       Mr. RAM                                                                                                                  
 

PROVISIONING TYPES: Kubernetes supports static and dynamic. 

 

STATIC PROVISIONING: 

 In the static provisioning, PVs are created by the cluster administrator and 

are allowed to use actual storage available in the cluster. This means that in 

order to use static provisioning, one needs to have a storage (e.g., Amazon 

EBS) capacity provisioned beforehand. 

                         

Sample flow for static provisioning of file storage 

1. The cluster admin gathers all the details about the existing storage device 

and creates a persistent volume (PV) in the cluster. 

2. 2. Based on the storage details in the PV, the storage plug-in connects the 

PV with the storage device in your IBM Cloud infrastructure account. 

3. The cluster admin or a developer creates a PVC. Because the PV and the 

storage device already exist, no storage class is specified in the PVC. 

4. After the PVC is created, the storage plug-in tries to match the PVC to an 

existing PV. The PVC and the PV match when the same values for the size, 

IOPS, and access mode are used in the PVC and the PV. When PVC and PV 

match, the status of the PVC and the PV changes to Bound. You can now 

use the PVC to mount persistent storage to your app. When you delete the 

PVC, the PV and the physical storage instance are not removed. You must 

remove the PVC, PV, and the physical storage instance separately. 

 



                                                                                                                                                                                               DEVOPS 
                                                                                                                                                                                                                       Mr. RAM                                                                                                                  
 

DYNAMIC PROVISIONING: 

 A dynamic provisioning of volumes can be triggered when a volume type 

claimed by the user does not match any PVs available in the cluster. Sample 

flow for dynamic provisioning of file storage with the pre-defined silver 

storage class. 

                          

 

Sample flow for static provisioning of file storage: 

1. The user creates a persistent volume claim (PVC) that specifies the storage 

type, storage class, size in gigabytes, number of IOPS, and billing type. The 

storage class determines the type of storage that is provisioned and the 

allowed ranges for size and IOPS. Creating a PVC in a cluster automatically 

triggers the storage plug-in for the requested type of storage to provision 

storage with the given specification. 

2. The storage device is automatically ordered and provisioned into your IBM 

Cloud infrastructure account. The billing cycle for your storage device starts. 

3. The storage plug-in automatically creates a persistent volume (PV) in the 

cluster, a virtual storage device that points to the actual storage device in 

your IBM Cloud infrastructure account. 

4. The PVC and PV are automatically connected to each other. The status of 

the PVC and the PV changes to Bound. You can now use the PVC to mount 

persistent storage to your app. If you delete the PVC, the PV and related 

storage instance are also deleted. 

 



                                                                                                                                                                                               DEVOPS 
                                                                                                                                                                                                                       Mr. RAM                                                                                                                  
 

Create a pv: 

#vim pv.yaml 

apiVersion: v1 

kind: PersistentVolume 

metadata: 

  name: my-pv 

spec: 

  storageClassName: local-storage 

  capacity: 

    storage: 2Gi 

  accessModes: 

    - ReadWriteOnce 

  hostPath: 

    path: "/mnt/data" 

 

#kubectl create -f pv.yaml 

#kubectl get pv 

 

Create a PVC: 

#vim pvc.yaml 

apiVersion: v1 

kind: PersistentVolumeClaim 

metadata: 

  name: my-pvc 

spec: 



                                                                                                                                                                                               DEVOPS 
                                                                                                                                                                                                                       Mr. RAM                                                                                                                  
 

  storageClassName: local-storage 

  accessModes: 

    - ReadWriteOnce 

  resources: 

    requests: 

      storage: 1Gi 

 

#kubectl create -f pvc.yaml 

#kubectl get pvc 

#kubectl get pv 

 

Create a pod: 

#vim pvc-pod.yaml 

apiVersion: v1 

kind: Pod 

metadata: 

  name: pvc-pod 

spec: 

  containers: 

  - name: busybox 

    image: busybox 

    command: ["/bin/sh", "-c", "while true; do sleep 3600; done"] 

    volumeMounts: 

    - mountPath: "/mnt/storage" 

      name: my-storage 



                                                                                                                                                                                               DEVOPS 
                                                                                                                                                                                                                       Mr. RAM                                                                                                                  
 

  volumes: 

  - name: my-storage 

    persistentVolumeClaim: 

      claimName: my-pvc 

 

#kubectl create -f pvc-pod.yaml 

#kubectl get po 

#kubectl exec -it pvc-pod -- /bin/sh 

#cd /mnt/storage 

#touch abc 

#ls 

 

under hostpath (node1 or node2) 

#cd /mnt/data 

#ls 

 


