
Python Paking and Unpaking Concepts?

In Python, packing and unpacking refer to the operations of collecting multiple values into a single variable

(packing) or spreading values from an iterable into individual variables (unpacking).

Packing

Packing is the process of combining multiple values into a single variable or data structure, typically a

tuple. You can achieve packing by simply listing the values separated by commas:

You can also explicitly use parentheses for clarity:

Unpacking

Unpacking involves extracting individual elements from a data structure like a tuple or a list and

assigning them to separate variables.

Unpacking can also be used to unpack only a part of the sequence:

Here, rest will contain the remaining elements as a list.

Packing and Unpacking with Functions

Packing and unpacking are often used in functions. For example, you can use the * operator to accept any

number of arguments in a function definition:

Similarly, you can use packing to pass multiple arguments to a function:

In this case, *my_list unpacks the list into individual arguments.

Packing and Unpacking with Dictionaries

You can also use packing and unpacking with dictionaries using ** operator:

This is used mainly for passing keyword arguments to functions.

Understanding packing and unpacking is crucial for writing concise and readable Python code,

especially when dealing with functions that accept variable numbers of arguments or returning

multiple values from functions.

	Packing
	Unpacking
	Packing and Unpacking with Functions
	Packing and Unpacking with Dictionaries

