
Python Modules

Any text file with the .py extension containing Python code is basically a

module. Different Python objects such as functions, classes, variables,

constants, etc., defined in one module can be made available to an interpreter
session or another Python script by using the import statement. Functions

defined in built-in modules need to be imported before use. On similar lines, a

custom module may have one or more user-defined Python objects in it. These

objects can be imported in the interpreter session or another script.

If the programming algorithm requires defining a lot of functions and classes,

they are logically organized in modules. One module stores classes, functions
and other resources of similar relevance. Such a modular structure of the code

makes it easy to understand, use and maintain.

Creating a Module

Shown below is a Python script containing the definition of sum() function. It is

saved as calc.py.

Importing a Module

We can now import this module and execute the sum() function in the Python

shell.

In the same way, to use the above calc module in another Python script, use

the import statement.

Every module, either built-in or custom made, is an object of a module class.

https://www.tutorialsteacher.com/python/python-interective-shell
https://www.tutorialsteacher.com/python/python-interective-shell

Verify the type of different modules using the built-in type() function, as shown

below.

Renaming the Imported Module

Use the as keyword to rename the imported module as shown below.

from .. import statement

The above import statement will load all the resources of the module in the

current working environment (also called namespace). It is possible to import
specific objects from a module by using this syntax. For example, the following
module calc.py has three functions in it.

Now, we can import one or more functions using the from...import statement.

For example, the following code imports only two functions in the test.py.

The following example imports only one function - sum.

You can also import all of its functions using the from...import * syntax.

Module Search Path

When the import statement is encountered either in an interactive session or in

a script:

 First, the Python interpreter tries to locate the module in the current

working directory.

 If not found, directories in the PYTHONPATH environment variable are

searched.

 If still not found, it searches the installation default directory.

As the Python interpreter starts, it put all the above locations in a list returned

by the sys.path attribute.

If the required module is not present in any of the directories above, the

message ModuleNotFoundError is thrown.

Reloading a Module

Suppose you have already imported a module and using it. However, the owner

of the module added or modified some functionalities after you imported it. So,
you can reload the module to get the latest module using the reload() function

of the imp module, as shown below.

Getting Help on Modules

Use the help() function to know the methods and properties of a module. For

example, call the help("math") to know about the math module. If you already

imported a module, then provide its name, e.g. help(math).

https://www.tutorialsteacher.com/python/help-method

As shown above, you can see the method names and descriptions. It will not

display pages of help ending with --More--. Press Enter to see more help.

You can also use the dir() function to know the names and attributes of a

module.

Python Module Attributes: name, doc, file, dict

Python module has its attributes that describes it. Attributes perform some

tasks or contain some information about the module. Some of the important

attributes are explained below:

__name__ Attribute

The __name__ attribute returns the name of the module. By default, the name of

the file (excluding the extension .py) is the value of __name__attribute.

In the same way, it gives the name of your custom module.

However, this can be modified by assigning different strings to this attribute.

Change hello.py as shown below.

And check the __name__ attribute now.

https://www.tutorialsteacher.com/python/dir-method

The value of the __name__ attribute is __main__ on the Python interactive shell.

When we run any Python script (i.e. a module), its __name__ attribute is also set

to __main__. For example, create the following welcome.py in IDLE.

Run the above welcome.py in IDLE by pressing F5. You will see the following

result.

However, when this module is imported, its __name__ is set to its filename. Now,

import the welcome module in the new file test.py with the following content.

Now run the test.py in IDLE by pressing F5. The __name__ attribute is now

"welcome".

https://www.tutorialsteacher.com/python/python-interactive-shell
https://www.tutorialsteacher.com/python/python-idle

This attribute allows a Python script to be used as an executable or as a

module.

__doc__ Attribute

The __doc__ attribute denotes the documentation string (docstring) line written

in a module code.

Consider the the following script is saved as test.py module.

The __doc__ attribute will return a string defined at the beginning of the module

code.

__file__ Attribute

__file__ is an optional attribute which holds the name and path of the

module file from which it is loaded.

__dict__ Attribute

The __dict__ attribute will return a dictionary object of module attributes,

functions and other definitions and their respective values.

}

	Python Modules
	Creating a Module
	Importing a Module
	Renaming the Imported Module
	from .. import statement
	Module Search Path
	Reloading a Module
	Getting Help on Modules

	Python Module Attributes: name, doc, file, dict
	__name__ Attribute
	__doc__ Attribute
	__file__ Attribute
	__file__ is an optional attribute which holds the name and path of the module file from which it is loaded.
	__dict__ Attribute

