

 DEVOPS
 Mr. RAM

 APACHE-MAVEN:

 Apache Maven is an open-source software project management and

comprehension tool.

 It was originally started as an attempt to simplify the build processes in the

Jakarta Turbine project.

 Maven can manage a project's build, reporting and documentation from a

central piece of information.

MAVEN OBJECTIVIES:

 Making the build process easy

 Providing a uniform build system

 Providing quality project information

 Providing guidelines for best practices development

 Allowing transparent migration to new features

 MAVEN REPOSITORIES:

 A repository in Maven holds build artifacts and dependencies of varying

types.

 It is a directory where all the project jars, library jar, plugins or any other

project specific artifacts are stored and can be used by Maven easily.

 Maven repositories are: Local Repository, Central Repository & Remote

Repository

 DEVOPS
 Mr. RAM

LOCAL REOSITORY:

 Maven local repository keeps your project's all dependencies (library jars,

plugin jars etc.).

 Maven automatically downloads all the dependency jars into the local

repository when you run it.

 It helps to avoid references to dependencies stored on remote machine every

time a project is build.

CENTRAL REPOSITORY:

 It is located on the web. It has been created by the Apache maven

community itself.

 The path of central repository is: https://repo.maven.apache.org/maven2/

 It contains a lot of common libraries that can be viewed by this url:

http://search.maven.org/

REMOTE REPOSITORY:

 Maven remote repository is located on the web. Most of libraries can be

missing from the central repository such as JBoss library etc, so we need to

define remote repository in pom.xml file.

 BUILD TOOLS:

 These are helps to create an executable application from the source code.

 The build tool is needed for the following processes:

 Generating source code

 Generating documentation from the source code

 Compiling source code

 Packaging the compiled codes into JAR files

 Installing the packaged code in the local repo, server, or central repo.

STAGES OF BUILD:

src -->

 Compile-->

 Package it -->

 Archive --> Deploy to server/JVM

 DEVOPS
 Mr. RAM

 MAVEN INSTALLATION ON CENTOS / RHEL 9:

STEP1: To update and change the hostname:

#yum update -y

#hostname Maven

#vim /etc/hostname

Maven

STEP 2: Security-Enhanced Linux is being disabled or in permissive

mode:

#sed -i 's/SELINUX=.*/SELINUX=disabled/g' /etc/selinux/config

#setenforce 0

STEP 3: Installing Java-21 Package

#yum install java-21 -y

#java --version

STEP 5: Download Binary file

#cd /opt

#wget https://dlcdn.apache.org/maven/maven-3/3.9.9/binaries/apache-maven-3.9.9-bin.tar.gz

#tar -xzvf apache-maven-3.9.2-bin.tar.gz

#ls

Rename extracted directory:

#mv apace-maven-3.9.2 maven3

#ls

 DEVOPS
 Mr. RAM

STEP6: Setting maven Paths:

#echo $PATH

#vim ~/.bashrc

M2_HOME=/opt/maven3

M2=/opt/maven3/bin

export PATH=$PATH:$M2_HOME:$M2

#source ~/.bashrc

#mvn --version

 BUILDING A PROJECT:

Maven Archetype:

 Archetype is a Maven project templating toolkit. An archetype is defined as

an original pattern or model from which all other things of the same kind are

made.

NOTE: Maven provides several archetype artifacts

 https://maven.apache.org/archetypes/

MAVEN CORE CONCEPTS (POM FILE):

 Maven is centered around the concept of POM file (Project Object Model).

 A POM file is an XML representation of project resources like source code,

test code, dependencies (External JARs used) etc.

 It contains a detailed description of your project, including information

about versioning and configuration management, dependencies, application

and testing resources, team members and structure, and much more.

 POM file should be located in the root directory of the project it belongs to.

 Some of the configuration that can be specified in the POM are the project

dependencies, the plugins or goals that can be executed, the build profiles,

and so on.

 DEVOPS
 Mr. RAM

POM.XML FILE ATTRIBUTES:

 Before maven 2, it was named as project.xml file. But, since maven 2 (also

in maven 3), it is renamed as pom.xml.

PROJECT: It is the root element of pom.xml file.

MODEL VERSION: It is a model version of the project.

GROUPID: It is the sub element of project. It specifies the id for the project

group.

ARTIFACTID: It is the sub element of project. It specifies the id for the

artifact (project). An artifact is something that is either produced or used by

a project. Examples of artifacts produced by Maven for a project include:

JARs, source and binary distributions, and WARs.

VERSION: It is the sub element of project. It specifies the version of the

artifact under given group.

 MAVEN BUILD LIFECYCLE PHASES:

 Maven is based around the central concept of a build lifecycle. What this

means: building and distributing a particular artifact is clearly defined.

VALIDATE: validate the project is correct & all necessary info is available

COMPILE: Compile the source code of the project.

TEST: Test the compiled source code using a suitable unit testing framework

These tests should not require the code be packaged or deployed

PACKAGE: Take the compiled code and package it in its distributable

format, such as a JAR.

VERIFY: run any checks on results of integration tests to ensure quality

criteria are met

INSTALL: install the package into the local repository, for use as a

dependency in other projects locally

DEPLOY: done in the build environment, copies the final package to the

remote repository for sharing with other developers and projects.

 DEVOPS
 Mr. RAM

 GENERATE A NEW PROJECT:

STEP 1: Setting Up the Directory Structure:

#mvn archetype:generate -DgroupId=sysgeeks.app -DartifactId=/opt/maven-

app -DarchetypeArtifactId=maven-archetype-quickstart -

Dinteractivemode=false

#cd /opt/maven-app

#ls -l

#tree

 The following is an explanation of what each directory's purpose is:

Building a Jar File:

STEP 2: Create a Project description:

 The most important file to Maven is project.xml. While you can run Maven

without it, it will not know anything about your project - so is only useful for

project-independant goals.

 DEVOPS
 Mr. RAM

#vim pom.xml

 The following goals will perform some standard behaviors:

maven java:compile: This will compile the code and check for errors -

nothing more.

maven test: This will compile the code and tests, then run all of the unit

tests

maven jar: This will build a JAR from your code, after running the tests as

above

maven site: Even now, you can generate a site in target/docs and see what it

will look like

 DEVOPS
 Mr. RAM

 COMMON TASKS:

Cleans the Maven project by deleting the target directory:

#mvn clean

Compiles the Java source classes of the Maven project:

mvn compiler:compile

To compiles the test classes of the Maven project:

#mvn compiler:testcompile

To builds the Maven project and packages it into a JAR, WAR, etc.:

#mvn package

#ls taget

To builds the Maven project and installs the project files (JAR, WAR,

pom.xml, etc.) to the local repository:

#mvn install

To deploys the artifact to the remote repository:

#mvn deploy

validates the Maven project to ensure that everything is correct and all

the necessary information is available:

#mvn validate

To analyzes the maven project to identify the unused declared and used

undeclared dependencies:

#mvn dependency:analyze

runs the test cases of the project:

#mvn test

To clean up after a build and start fresh, simply run:

#mvn clean

#ls target

