
 DEVOPS

 Mr. RAM

 DEVOPS

 Mr. RAM

 DOCKER

 Docker is an open platform tool for developing, shipping, & running

applications. Docker enables you to separate your applications from your

infrastructure so you can deliver software quickly.

 Docker is a bit like a virtual machine. But unlike a virtual machine, rather

than creating a whole virtual operating system.

 Docker provides a way to run applications securely isolated in a container,

packaged with all its dependencies and libraries.

 It is designed to benefit both developers and system administrators, making

it a part of many DevOps tool chains.

 DOCKER ARCHITECTURE:

 Docker uses a client-server architecture. The Docker client talks to the

Docker daemon, which does the heavy lifting of building, running, and

distributing your Docker containers.

 The Docker client and daemon can run on the same system, or you can

connect a Docker client to a remote Docker daemon.

 DEVOPS

 Mr. RAM

DOCKER DAEMON:

 The Docker daemon (dockerd) listens for Docker API requests and manages

Docker objects such as images, containers, networks, and volumes.

DOCKER CLIENT:

 The Docker client (docker) is the primary way that many Docker users

interact with Docker.

DOCKER REGISTRIES:

 A Docker registry stores Docker images. Docker Hub is a public registry

that anyone can use, and Docker is configured to look for images on Docker

Hub by default.

DOCKER OBJECTS:

IMAGES:

 An image is a read-only template with instructions for creating a Docker

container.

 A container is launched by running an image. An image is an executable

package that includes everything needed to run an application–the code, a

runtime, libraries, environment variables, and configuration files.

CONTAINERS:

 A container is a runnable instance of an image. You can create, start, stop,

move, or delete a container using the Docker API or CLI.

 Docker Containers are:

 Flexible : Even the most complex app’s can be containerized.

 Lightweight : Containers leverage and share the host kernel.

 Interchangeable: You can deploy updates and upgrades on-the-fly.

 Portable : Can build locally, deploy to the cloud and run anywhere

 Scalable : Can increase & automatically distribute container replicas.

 Stackable : You can stack services vertically and on-the-fly.

 DEVOPS

 Mr. RAM

 VIRTUAL MACHINES VS CONTAINERS:

VIRTUAL MACHINES:

 A virtual machine (VM) is a virtual environment that functions as a virtual

computer system with its own CPU, memory, network interface, and

storage, created on a physical. In other words, creating a computer within a

computer.

 Multiple virtual machines can run simultaneously on the same physical

computer.

CONTAINERS:

 A container is a running instance of an image. You can create, start, stop,

move, or delete a container using the Docker API or CLI.

 DEVOPS

 Mr. RAM

 DOCKER INSTALLATION:

DOCKER ENGINE OVERVIEW:

 Docker Engine is an open-source containerization technology for building

and containerizing your applications.

 Docker Engine acts as a client-server application with:

 A server with a long-running daemon process dockerd.

 APIs which specify interfaces that programs can use to talk to

and instruct the Docker daemon.

 A command line interface (CLI) client docker.

SUPPORTED PLATFORMS:

 Docker Desktop for Mac (macOS)

 Docker Desktop for Windows

 Linux distributions:

 Red Hat, Centos, Fedora, Debian, Ubuntu…etc.

 Cloud Platforms:

 AWS, AZURE, GCP, Digital Ocean…. etc.

INSTALL DOCKER DESKTOP ON WINDOWS:

 Windows 10 64-bit: Home or Pro 2004 (build 19041) or higher, or

Enterprise or Education 1909 or higher.

 Enable the WSL 2 feature on Windows. (Windows Subsystem for Linux,

version 2)

 The following hardware prerequisites are required to successfully run WSL

2 on Windows 10:

 64-bit processor with Second Level Address Translation (SLAT)

 4GB system RAM

 BIOS-level hardware virtualization support must be enabled in the BIOS

settings.

 Download and install the Linux kernel update package:

https://docs.microsoft.com/en-us/windows/wsl/install-win10#step-4---

download-the-linux-kernel-update-package

NOTE: https://docs.docker.com/engine/install/

https://docs.docker.com/engine/install/

 DEVOPS

 Mr. RAM

INSTALL DOCKER ENGINE ON LINUX:

INSTALL ON RED HAT / CENTOS:

 To install Docker Engine, you need a maintained version:

 RedHat / CentOS 7, 8, 9

 Ubuntu 18, 20, 21

 DEVOPS

 Mr. RAM

 DEVOPS

 Mr. RAM

DOCKER COMMANDS

COMMAND DESCRIPTION

docker attach : Attach local standard input, output, & error streams to a running container

docker build : Build an image from a Docker file

docker checkpoint : Manage checkpoints

docker commit : Create a new image from a container’s changes

docker config : Manage Docker configs

docker container : Manage containers

docker cp : Copy files/folders between a container and the local filesystem

docker create : Create a new container

docker deploy : Deploy a new stack or update an existing stack

docker diff : Inspect changes to files or directories on a container’s filesystem

docker events : Get real time events from the server

docker exec : Run a command in a running container

docker export : Export a container’s filesystem as a tar archive

docker history : Show the history of an image

docker image : Manage images

docker images : List images

docker import : Import the contents from a tar ball to create a filesystem image

docker info : Display system-wide information

docker inspect : Return low-level information on Docker objects

docker kill : Kill one or more running containers

docker load : Load an image from a tar archive or STDIN

docker login : Log in to a Docker registry

docker logout : Log out from a Docker registry

docker logs : Fetch the logs of a container

docker network : Manage networks

 DEVOPS

 Mr. RAM

docker node : Manage Swarm nodes

docker pause : Pause all processes within one or more containers

docker plugin : Manage plugins

docker port : List port mappings or a specific mapping for the container

docker ps : List containers

docker pull : Pull an image or a repository from a registry

docker push : Push an image or a repository to a registry

docker rename : Rename a container

docker restart : Restart one or more containers

docker rm : Remove one or more containers

docker rmi : Remove one or more images

docker run : Run a command in a new container

docker save : Save one or more images to a tar archive (streamed to STDOUT)

docker search : Search the Docker Hub for images

docker secret : Manage Docker secrets

docker service : Manage services

docker stack : Manage Docker stacks

docker start : Start one or more stopped containers

docker stats : Display a live stream of container(s) resource usage statistics

docker stop : Stop one or more running containers

docker system : Manage Docker

docker tag : Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE

docker top : Display the running processes of a container

docker unpause : Unpause all processes within one or more containers

docker update : Update configuration of one or more containers

docker version : Show the Docker version information

docker volume : Manage volumes

docker wait : Block until one or more containers stop, then print their exit codes

 DEVOPS

 Mr. RAM

DOCKER IMAGES

#docker search centos

#docker pull centos

#docker images (or) #docker image ls

Image History:

#docker image history a9d583973f65

Image Details:

#docker image inspect ubuntu

Removing dangling images:

A dangling image is an image that is not tagged and is not used by any container.

To remove dangling images:

#docker image prune

Remove Image:

#docker rmi imageid or docker images rm imageid

Removing all unused images

#docker image prune -a

MANIPULATING DOCKER IMAGES:

#docker run -i -t <imagename>:<tag> /bin/bash

Options: -i : Gives us an interactive shell into the running container

-t : Will allocate a pseudo-tty

-d : The daemon mode

#docker run -i -t centos:latest /bin/bash

#docker ps (or) #docker container ls [List running containers] [on another

terminal]

#docker ps -a [all containers]

 DEVOPS

 Mr. RAM

#docker stop cid [Application shutdown gracefully]

#docker start -a cid [-a attach mode]

Rename Container:

#docker rename <current_container_name> <new_container_name>

Container stats:

#docker stats <container_name>

#docker stats cid

Monitor Container:

#docker top cid/name

Container Pause:

#docker container pause containerID

Container Unpause:

#docker container unpause cid

Kill one or more Containers:

#docker kill cid [no time for proper shutdown of Application]

Removing Containers:

#docker container rm cid (or) #docker rm cid

Removing all stopped containers:

#docker container prune

Docker System and stat:

#docker logs cid

#docker logs -f cid

#docker system

#docker system df

 DEVOPS

 Mr. RAM

#docker system events [Two terminals] #docker stop containerID / Launch new

container

#docker system prune [Delete all stopped and unused containers]

#docker system prune -a [Delete all images and stopped containers]

PORT FORWARDING:

#docker run -d -p <host_port>:<container_port> <image>:<tag>

#docker pull nginx

#docker run --name mynginx -d -p 8080:80 nginx/imageid

Go To Web Browser

http://host-ipaddress:8080/

#docker logs cid

#docker logs -f cid

Allocate Memory for Container:

#docker status ContID

#docker run -d -p 8000:80 -m 512m nginx [Container memory limit 512m max]

#docker run -d -p 8000:80 -m 512m --cpu-quota=50000 nginx [cpulimit

50000(50%) total cpu size 100thousend]

 DEVOPS

 Mr. RAM

DOCKER FILE

 Dockerfile is the core file that contains instructions to be performed when an

image is built.

 Docker can build images automatically by reading the instructions from a

Dockerfile.

 A Dockerfile is a text document that contains all the commands a user could

call on the command line to assemble an image.

 The docker build command builds an image from a Dockerfile and a context.

 Here syntax to write instruction and its arguments with in a Dockerfile.

comment

Instruction arguments

DOCKER FILE INSTRUCTIONS & ARGUMENTS:

FROM:

 A docker file must start with a FROM instruction.

 The FROM instruction initializes a new build stage and sets the Base Image

for subsequent instructions.

Ex: FROM centos:latest

MAINTAINER:

 MAINTAINER Instruction is used to specify about the author who creates

this new docker image for the support.

Ex: MAINTAINER RAJU rnraju4u@gmail.com

LABEL:

 It is used to specify metadata information to an Image. A LABEL is a key-

value pair.

Ex: LABEL "App_Env"="Production"

mailto:rnraju4u@gmail.com

 DEVOPS

 Mr. RAM

RUN:

 It is used to executes any commands on top of the current image and this

will create a new layer.

 It has two forms: Shell form & Executable form

Shell Form:

Ex: RUN yum update

RUN yum install httpd -y

Executable form:

Ex: RUN ["yum","update"]

RUN ["Systemctl","start","sshd"]

CMD:

 It is used to set a command to be executed when running a container.

 There must be only one CMD in a Dockerfile. If more than one CMD is

listed, only the last CMD takes effect.

 It has two forms: Shell form & Executable form

Ex: CMD ping google.com

CMD python myapplication.py

ENTRYPOINT:

 It is used to configure and run a container as an executable.

 It has two forms: Shell form & Executable form.

Ex: ENTRYPOINT ping google.com

ENTRYPOINT python myapplication.py

NOTE: If user specifies any arguments (commands) at the end of "docker run"

command, the specified commands override the default in CMD instruction,

But ENTRYPOINT instructional are not overwritten by the docker run

command and ENTRYPOINT instruction will run as it is.

 DEVOPS

 Mr. RAM

EXPOSE:

 This instruction informs Docker that the container listens on the specified

network ports at runtime.

 By default, EXPOSE assumes TCP. You can also specify UDP.

 To publish the port when running the container, use the -p flag on docker run

Ex: EXPOSE 80/tcp

COPY:

 It is used to copy files, directories and Remote url filesto the destination

(Docker image) within the file system of the docker images.

 It has two forms: Shell form & Executable form

EX: COPY src dest

COPY /root/file /tmp

NOTE: If the "src" argument is compressed file (tar, zip bzip2..etc), then it

will copy exactly as a compressed file and will not extract.

ADD:

 It is used to copy files, directories and Remote URL files to the destination

within the file system of the docker images.

 It has two forms: Shell form & Executable form

EX: ADD src Dest

ADD /root/file /tmp

NOTE: If the "src" argument is compressed file (tar, zip bzip2..etc), then it

will Extract it automatically inside a destination in the Docker image.

 DEVOPS

 Mr. RAM

WORKDIR:

 It is used to set the working directory.

EX: WORKDIR /tmp

USER:

 The USER instruction lets you specify the username to be used when a

command is run.

 It is used to set the user name, group name, UID, GID for running subseqent

commands. Else root user will be used.

Ex: USER webadmin

USER webadmin:webgroup

USER 1010

ENV:

 It is used to set environmental variables with key and value set.

ENV <key> <value>

ENV username admin

(or)

ENV <key>=<value>

ENV username=admin

Ex: ENV username=admin database=mydb tableprefix=pr2_

ARG:

 It is also used to set environment variables with key and value, but this

variable will set only during the image build not on the container.

Ex: ARG tmp_ver 2.0

 DEVOPS

 Mr. RAM

ONBUILD:

 The ONBUILD instruction lets you stash a set of commands that will be

used when the image is used again as a base image for a container.

Ex: ONBUILD ADD

ONBUILD RUN

BUILDING IMAGES USING DOCKERFILE

 The docker build command builds Docker images from a Dockerfile and a

“context”.

 A build’s context is the set of files located in the specified PATH or URL.

#docker build .

#docker build -f <path_to_Dockerfile> -t <REPOSITORY>:<TAG>

EXAMPLE 1:

FROM centos:latest

MAINTAINER RAJU rnraju4u@gmail.com

RUN yum update -y

LABEL "Env"="Prod" \

"Proj"="Airtel" \

"Version"="8.4"

copy *.txt /opt/

ADD backup.tar /tmp/

ENTRYPOINT ping google.com

mailto:rnraju4u@gmail.com

 DEVOPS

 Mr. RAM

PYTHON FLASK:

Super simple example of a Dockerfile

FROM centos:latest

MAINTAINER Raju "rnraju4u@gmail.com"

RUN yum update -y

RUN yum install -y python3 python3-pip wget

RUN pip3 install Flask

ADD hello.py /home/hello.py

WORKDIR /home

#docker build -t python3:centos .

#docker ps

#docker run -d -p 5000:5000 python:centos python3 hello.py

WEBSERVER:

FROM centos

RUN yum install httpd -y

COPY index.html /var/www/html/

CMD ["/usr/sbin/httpd","-D","FOREGROUND"]

EXPOSE 80

#docker run -d -p 8080:80 webserver

http://10.10.10.10:8080

mailto:rnraju4u@gmail.com

 DEVOPS

 Mr. RAM

DOCKER HUB

 The Docker Hub is a location on the cloud, where you can store and share

images that you have created.

 Can also link your images to the GitHub or Bitbucket repositories that can

be built automatically based on web hooks.

 There are two types of repositories on the Docker Hub:

PUBLIC REPOSITORIES:

 Users get access to free public repositories for storing and sharing images.

 Anyone can use the docker pull command to download an image to their

local system and run or build further images from it.

PRIVATE REPOSITORIES:

 Private repositories are just that private.

 Users can choose a subscription plan for private repositories.

COMPARING DOCKER HUB TO DOCKER SUBSCRIPTION:

DOCKER HUB:

 Shareable image, but it can be private

 No hassle of self-hosting

 Free (except for a certain number of private images)

DOCKER SUBSCRIPTION:

 Integrated into your authentication services (that is, AD/LDAP)

 Deployed on your own infrastructure (or cloud)

 Commercial support

NOTE: By default, repositories are pushed as public. If you want to set them to

private, log in to the Docker Hub website and set the repository to Make

Private. You can also mark images as unlisted, so they don't show up in the

Docker searches. You can also mark them as listed at a later date as well.

 DEVOPS

 Mr. RAM

DOCKER HUB ENTERPRISE:

 Docker Enterprise offers you is access to the software, access to

updates/patches/security fixes, and support relating to issues with the

software.

 The open-source Docker repository image doesn't offer these services at this

level;

DOCKER REGISTRY:

 A Docker registry is a storage and distribution system for Docker images.

The same image might have multiple different versions, identified by their

tags.

 A Docker registry is organized into Docker repositories, where a repository

holds all the versions of a specific image.

EXEC: Run a command in a running container.

The docker exec command runs a new command in a running container.

SYN: #docker exec [options] container-id command [Arg….]

Ex: #docker exec -d ebac99faf1f2 touch /opt/php

#docker exec -it ebac99faf1f2 bash

#ls /opt

COMMIT: Create a new image from a container’s changes.

It can be used to commit a container’s file changes or settings into a new image.

The commit operation will not include any data contained in volumes mounted

inside the container.

SYN: #docker commit [options] CONTAINER [Repository[:tag]]

Ex: # docker commit c3f279d17e0a rnraju/testimage:version3

#docker image ps

 DEVOPS

 Mr. RAM

DOCKER NETWORKING

 Docker includes support for networking containers through the use

of network drivers.

 Docker’s networking subsystem is pluggable, using drivers.

BRIDGE:

The default network driver. If you don’t specify a driver, this is the type of

network you are creating.

Bridge networks are usually used when your applications run in

standalone containers that need to communicate.

HOST:

For standalone containers, remove network isolation between the container and

the Docker host, and use the host’s networking directly.

OVERLAY: Overlay networks connect multiple Docker daemons together and

enable swarm services to communicate with each other. You can also use

overlay networks to facilitate communication between a swarm service and a

standalone container, or between two standalone containers on different Docker

daemons. This strategy removes the need to do OS-level routing between these

containers.

MACVLAN:

Macvlan networks allow you to assign a MAC address to a container, making it

appear as a physical device on your network. The Docker daemon routes traffic

to containers by their MAC addresses. Using the macvlan driver is sometimes

the best choice when dealing with legacy applications that expect to be directly

connected to the physical network, rather than routed through the Docker host’s

network stack.

NONE: For this container, disable all networking. Usually used in conjunction

with a custom network driver. none is not available for swarm services.

 DEVOPS

 Mr. RAM

LAUNCH A CONTAINER ON THE DEFAULT NETWORK

CREATE YOUR OWN BRIDGE NETWORK:

 DEVOPS

 Mr. RAM

NOTE: The relationship between a host and containers is 1:N.

#ifconfig

#docker network ls

#brctl show

#apt-get install bridge-utils (yum install bridge-utils)

#brctl show docker0 [check it number of interfaces are running]

#docker network inspect bridge

#docker run --rm -it --name=test1 alpine sh

#ifconfig [it will get 172.x.0.2]

#brctl show docker0

#docker network inspect bridge [on another terminal]

#docker run --rm -it --name=test2 alpine sh

#ifconfg [it will get 0.3]

#ping 172.17.0.2

[it will communicate baoth because both are running on same bridge(same

network)]

#cat /etc/hosts

172.17.0.3 8a77e2b61724

#hostname

 DEVOPS

 Mr. RAM

To change hostname:

#docker run --rm -it --name=test2 --hostname test2.example.com alpine sh

#hostname

#cat /etc/hosts

#brctl show docker0

Create a custom bridge network:

#docker network create my-network

#docker network ls

#docker network inspect my-network

Connect a container to a user-defined bridge:

#docker run -it --name my-nginx --network my-network -p 8080:80

nginx:latest

#docker network rm my-network

#docker network create test-network --subnet 192.168.0.0/16 --gateway

192.168.0.1

#docker network inspect test-network

#docker run -it --net test-network --name test3 alpine sh

############### Communicate different containers ##################

 DEVOPS

 Mr. RAM

#ping 172.17.0.3

#docker network connect bridge test3

#ping 172.17.0.3 [from 192.168.0.1 container]

Disconnect a container from a user-defined bridge:

#docker network disconnect my-network test3

################# HOST NETWORK ##########################

#docker run --rm -d --network host --name my_nginx nginx

Access Nginx by browsing to http://localhost:80/.

#ip addr show

#netstat -tulpn | grep :80

Disable networking for a container:

#docker run --rm -dit --network none --name no-net-alpine alpine sh

#docker exec no-net-alpine ip link show

#docker exec no-net-alpine ip route [empty ouput because there is no

routing table]

HOST NETWORK:

#docker run -it --network host alpine sh

#ifconfig

NONE NETWORK:

#docker run -it --network none alpine sh

#ifconfig

NOTE: only one instance of "host" and "null" networks are allowed.

 DEVOPS

 Mr. RAM

MANAGING DATA IN DOCKER

 By default, all files created inside a container are stored on a writable

container layer. This means that:

 The data doesn’t persist when that container no longer exists.

 You can’t easily move the data somewhere else.

 Docker has two options for containers to store files in the host machine

persistently.

 volumes

 bind mounts

 Running Docker on Linux you can also use a tmpfs mount.

 Running Docker on Windows you can also use a named pipe.

VOLUMES:

 Volumes are stored in a part of the host filesystem which is managed by

Docker (/var/lib/docker/volumes/ on Linux).

 Volumes are the best way to persist data in Docker.

BIND MOUNTS:

 Bind mounts may be stored anywhere on the host system. They may even

be important system files or directories.

 DEVOPS

 Mr. RAM

TMPFS MOUNTS:

 tmpfs mounts are stored in the host system’s memory only, and are never

written to the host system’s filesystem.

USE A TMPFS:

#docker run -d -it --name tmptest --tmpfs /app ubuntu

#docker ps

#docker exec -it <CID> /bin/bash

#cd /app

#touch abc

#exit

#docker stop <CID>

#docker start <CID>

#docker exec -it <CID> /bin/bash

#cd /opt

#ls [No files here]

VOLUMES:

#docker pull ubuntu

#docker images

#docker run -it -v /my-data ubuntu bash

#cd /my-data

ls

NOTE: By default volume mounted to /var/lib/docker/volumes/someidname

 DEVOPS

 Mr. RAM

#docker inspect <CONTAINER_ID>

can also use multiple -v volume switches on a single docker run line:

$docker run -it -v /my-data -v /data ubuntu /bin/bash

docker volume:

Creates a new volume that containers can consume and store data in. If a

name is not specified, Docker generates a random name.

Syn: #docker volume create [options] [VOLUME]

#docker volume create my-vol

#docker volume ls

#cd /var/lib/docker/volumes

#ls

#docker run -it -v my-vol:/world ubuntu bash

#cd /world

#ls

 DEVOPS

 Mr. RAM

DOCKER COMPOSE

 Docker Compose is a tool for defining and running multiple containers as a

single service.

USING COMPOSE IS BASICALLY A THREE-STEP PROCESS:

STEP1: Define your app’s environment with a Dockerfile so it can be

reproduced anywhere.

STEP2: Define the services that make up your app in docker-compose.yml so

they can be run together in an isolated environment.

STEP3: Run docker compose up and the Docker compose command starts

and runs your entire app.

DOCKER COMPOSE FILE STRUCTURE:

version: 'X'

services:

web:

build: .

ports:

- "5000:5000"

volumes:

- .:/code

redis:

image: redis

https://docs.docker.com/compose/cli-command/

 DEVOPS

 Mr. RAM

SERVICE:

 A service can be run by one or multiple containers.

 Examples of services might include an HTTP server, a database, or any

other type of executable program that you wish to run in a distributed

environment.

INSTALLATION:

#curl -L "https://github.com/docker/compose/releases/download/1.28.6/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compos

#chmod +x /usr/local/bin/docker-compose

#ln -s /usr/local/bin/docker-compose /usr/bin/docker-compose

(or)

#pip install -U Docker-compose

#docker-compose --version

Upgrading:

#docker-compose migrate-to-labels

Uninstallation:

#rm /usr/local/bin/docker-compose

(or)

#pip uninstall docker-compose

 DEVOPS

 Mr. RAM

Example 1:

Step1: Create docker compose file at any location on your system.

#mkdir /dockercompose

#vim docker-compose.yml

version: '3' ###https://docs.docker.com/compose/compose-file/ [versions]

services:

web:

image: nginx

ports:

- 9090:80

database:

image: redis:

Step2: Check the validity of file

#docker-compose config

Step3: Run the file

#docker-compose up -d

#docker-compose ps or #docker ps

Step4: Bring down application

#docker-compose down

SCALE A SERVICES:

#docker-compose up -d --scale database=4

#docker-compose down

	DOCKER
	DOCKER DAEMON:
	DOCKER CLIENT:
	DOCKER REGISTRIES:
	IMAGES:
	CONTAINERS:

	 VIRTUAL MACHINES VS CONTAINERS:
	VIRTUAL MACHINES:
	CONTAINERS:

	 DOCKER INSTALLATION:
	DOCKER ENGINE OVERVIEW:
	SUPPORTED PLATFORMS:
	INSTALL DOCKER DESKTOP ON WINDOWS:
	INSTALL DOCKER ENGINE ON LINUX: INSTALL ON RED HAT / CENTOS:
	 RedHat / CentOS 7, 8, 9
	 Ubuntu 18, 20, 21

	DOCKER COMMANDS
	COMMAND DESCRIPTION

	DOCKER IMAGES
	Image History:
	Image Details:
	Removing dangling images:
	To remove dangling images:
	Remove Image:
	Removing all unused images
	MANIPULATING DOCKER IMAGES:
	Rename Container:
	Container stats:
	Monitor Container:
	Container Pause:
	Kill one or more Containers:
	Removing Containers:
	Removing all stopped containers:
	PORT FORWARDING:

	DOCKER FILE
	DOCKER FILE INSTRUCTIONS & ARGUMENTS: FROM:
	MAINTAINER:
	LABEL:
	RUN:
	Shell Form:
	Executable form:
	CMD:
	ENTRYPOINT:
	EXPOSE:
	COPY:
	ADD:
	WORKDIR:
	USER:
	ENV:
	(or)
	ARG:
	ONBUILD:

	BUILDING IMAGES USING DOCKERFILE
	EXAMPLE 1:
	PYTHON FLASK:
	WEBSERVER:

	DOCKER HUB
	PUBLIC REPOSITORIES:
	PRIVATE REPOSITORIES:
	COMPARING DOCKER HUB TO DOCKER SUBSCRIPTION: DOCKER HUB:
	DOCKER SUBSCRIPTION:
	DOCKER HUB ENTERPRISE:
	DOCKER REGISTRY:

	DOCKER NETWORKING
	BRIDGE:
	Bridge networks are usually used when your applications run in standalone containers that need to communicate.
	MACVLAN:
	LAUNCH A CONTAINER ON THE DEFAULT NETWORK
	Create a custom bridge network:
	HOST NETWORK:
	NONE NETWORK:

	MANAGING DATA IN DOCKER
	 volumes
	VOLUMES:
	BIND MOUNTS:
	TMPFS MOUNTS:
	USE A TMPFS:
	VOLUMES: (1)

	DOCKER COMPOSE
	USING COMPOSE IS BASICALLY A THREE-STEP PROCESS:
	DOCKER COMPOSE FILE STRUCTURE:
	build: . ports:
	volumes:
	image: redis
	Upgrading:
	Uninstallation:
	#pip uninstall docker-compose
	Step1: Create docker compose file at any location on your system. #mkdir /dockercompose
	Step3: Run the file
	SCALE A SERVICES:

