

 TERRAFORM
 Mr. R N RAJU

WHAT IS INFRASTRUCTURE AS CODE (IAC):

 Infrastructure as Code (IaC) is the managing and provisioning of

infrastructure through code instead of through manual processes.

 With IaC, configuration files are created that contain your infrastructure

specifications, which makes it easier to edit and distribute configurations. It

also ensures that you provision the same environment every time.

 Version control is an important part of IaC, and your configuration files

should be under source control just like any other software source code file.

 Automating infrastructure provisioning with IaC means that developers

don’t need to manually provision and manage servers, operating systems,

storage, and other infrastructure components each time they develop or

deploy an application.

 There are 2 ways to approach IaC:

 Declarative

 imperative.

DECLARATIVE:

 A declarative approach defines the desired state of the system, including

what resources you need and any properties they should have, and an IaC

tool will configure it for you.

 A declarative approach also keeps a list of the current state of your system

objects, which makes taking down the infrastructure simpler to manage.

IMPERATIVE:

 An imperative approach instead defines the specific commands needed to

achieve the desired configuration, and those commands then need to be

executed in the correct order.

NOTE:

 Many IaC tools use a declarative approach and will automatically provision

the desired infrastructure. If you make changes to the desired state, a

declarative IaC tool will apply those changes for you. An imperative tool

will require you to figure out how those changes should be applied.

 TERRAFORM
 Mr. R N RAJU

BENEFITS OF IAC:

 Provisioning infrastructure has historically been a time-consuming and

costly manual process. As virtualization, containers, and cloud computing

have become the norm, infrastructure management has moved away from

physical hardware in data centers—providing many benefits, but also

creating some new challenges.

 With cloud computing, the number of infrastructure components has grown,

more applications are being released to production on a daily basis, and

infrastructure needs to be able to be spun up, scaled, and taken down

frequently. Without an IaC practice in place, it becomes increasingly

difficult to manage the scale of today’s infrastructure.

BENEFITS:

 Cost reduction

 Increase in speed of deployments

 Reduce errors

 Improve infrastructure consistency

 Eliminate configuration drift

WHY DOES IAC MATTER FOR DEVOPS:

 IaC is an important part of implementing DevOps practices and continuous

integration/continuous delivery (CI/CD).

 IaC takes away the majority of provisioning work from developers, who can

execute a script to have their infrastructure ready to go. That way,

application deployments aren’t held up waiting for the infrastructure, and

sysadmins aren’t managing time-consuming manual processes.

 Aligning development and operations teams through a DevOps approach

leads to fewer errors, manual deployments, and inconsistencies.

 IaC helps you to align development and operations because both teams can

use the same description of the application deployment, supporting a

DevOps approach.

 DevOps best practices are also applied to infrastructure in IaC. Infrastructure

can go through the same CI/CD pipeline as an application does during

software development, applying the same testing and version control to the

infrastructure code.

 TERRAFORM
 Mr. R N RAJU

IAC TOOLS:

 Server automation and configuration management tools can often be used to

achieve IaC. There are also solutions specifically for IaC.

 These are some popular choices:

 Chef

 Puppet

 Red Hat Ansible Automation Platform

 Saltstack

 Terraform

 AWS CloudFormation

 Microsoft ARM

 Vagrant

TERRAFORM:

 Terraform is an open source “Infrastructure as Code” tool, created by

HashiCorp.

 It is used to build, change, and version cloud and on-prem resources safely

and efficiently.

 A declarative coding tool, uses a high-level configuration language called

HCL (HashiCorp Configuration Language).

TERRAFORM LANUAGE:

 The main purpose of the Terraform language is declaring resources, which

represent infrastructure objects.

 A Terraform configuration is a complete document in the Terraform

language that tells Terraform how to manage a given collection of

infrastructure.

 A configuration can consist of multiple files and directories.

 The syntax of the Terraform language consists of only a few basic elements:

 TERRAFORM
 Mr. R N RAJU

BLOCKS:

 Blocks are containers for other content and usually represent the

configuration of some kind of object, like a resource.

 Blocks have a block type, can have zero or more labels, and have a body that

contains any number of arguments and nested blocks.

 Most of Terraform's features are controlled by top-level blocks in a

configuration file.

ARGUMENTS:

 Arguments assign a value to a name. They appear within blocks.

EXPRESSIONS:

 Expressions represent a value, either literally or by referencing and

combining other values.

 They appear as values for arguments, or within other expressions.

IDENTIFIERS:

 Argument names, block type names, and the names of most Terraform-

specific constructs like resources, input variables, etc. are all identifiers.

 Identifiers can contain letters, digits, underscores (_), and hyphens (-).

 The first character of an identifier must not be a digit, to avoid ambiguity

with literal numbers.

 TERRAFORM
 Mr. R N RAJU

WHY TERRAFORM:

 Opensource

 Platform agnostic

 Immutable Infrastructure

 Easy Code readability

 Manage any infrastructure

 Track your infrastructure

 Automate changes

 Standardize configurations

 Collaborate

USE CASES:

 Multi-Cloud Deployment

 Application Infrastructure Deployment, Scaling, and Monitoring Tools

 Self-Service Clusters

 Policy Compliance and Management

 PaaS Application Setup

 Software Defined Networking

 Kubernetes

 Parallel Environments

TERRAFORM COMMUNITY:

 We welcome questions, suggestions, and contributions from the community.

Ask questions: https://discuss.hashicorp.com/c/terraform-core/27

Read our contributing guide:

https://github.com/hashicorp/terraform/blob/main/.github/CONTRIBUTING.md

Submit an issue for bugs and feature requests:

https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fhashicor

p%2Fterraform%2Fissues%2Fnew%2Fchoose

 TERRAFORM
 Mr. R N RAJU

HOW DOES TERRAFORM WORK:

 Terraform creates and manages resources on cloud platforms and other

services through their application programming interfaces (APIs).

 Providers enable Terraform to work with virtually any platform or service

with an accessible API.

 HashiCorp and the Terraform community have already written thousands of

providers to manage many different types of resources and services.

 Providers are including, Amazon Web Services (AWS), Azure, Google

Cloud Platform (GCP), Kubernetes, Helm, GitHub, Splunk, DataDog, and

many more.

TERRAFORM WORKFLOW CORE STAGES:

WRITE:

 You define resources, which may be across multiple cloud providers and

services. For example, create a configuration to deploy an application on

virtual machines.

PLAN:

 Terraform creates an execution plan describing the infrastructure it will

create, update, or destroy based on the existing infrastructure and your

configuration.

APPLY:

 On approval, Terraform performs the proposed operations in the correct

order, respecting any resource dependencies.

 TERRAFORM
 Mr. R N RAJU

TERRAFORM PROVIDERS:

 Terraform providers are plugins that implement resource types.

 Providers are a logical abstraction of an upstream API. They are responsible

for understanding API interactions and exposing resources.

 TERRAFORM
 Mr. R N RAJU

HOW TERRAFORM, PROVIDERS AND MODULES WORK:

TERRAFORM:

 Terraform provisions, updates, and destroys infrastructure resources such as

physical machines, VMs, network switches, containers, and more.

 TERRAFORM
 Mr. R N RAJU

CONFIGURATIONS:

 Configurations are code written for Terraform, using the human-readable

HashiCorp Configuration Language (HCL) to describe the desired state of

infrastructure resources.

PROVIDERS:

 Providers are the plugins that Terraform uses to manage those resources.

Every supported service or infrastructure platform has a provider that

defines which resources are available and performs API calls to manage

those resources.

MODULES:

 Modules are reusable Terraform configurations that can be called and

configured by other configurations. Most modules manage a few closely

related resources from a single provider.

TERRAFORM REGISTRY:

 The Terraform Registry makes it easy to use any provider or module. To use

a provider or module from this registry, just add it to your configuration;

when you run `terraform init`, Terraform will automatically download

everything it needs.

