

 TERRAFORM
 Mr. RAM

 RESOURCES:

 Resources are the most important element in the Terraform language.

 Each resource block describes one or more infrastructure objects, such as

virtual networks, compute instances, or higher-level components such as

DNS records.

EXAMPLE:

resource "aws_instance" "web" {

 ami = "ami-a1b2c3d4"

 instance_type = "t2.micro"

}

 The resource type ("aws_instance") and name ("Web") together

must be unique.

 Within the block body (between { and }) are the configuration

arguments for the resource itself.

 ami and instance_type are special arguments for the aws_instance

resource type.

 RESOURCE TYPES:

 Each resource is associated with a single resource type, which determines

the kind of infrastructure object it manages and what arguments and other

attributes the resource supports.

 PROVIDERS

 RESOURCE ARGUMENTS

 META-ARGUMENTS

 CUSTOM CONDITION CHECKS

 OPERATION TIMEOUTS

PROVIDERS:

 A provider is a plugin for Terraform that offers a collection of resource

types. Each resource type is implemented by a provider.

 A provider provides resources to manage a single cloud or on-premises

infrastructure platform.

 TERRAFORM
 Mr. RAM

RESOURCE ARGUMENTS:

 Most of the arguments within the body of a resource block are specific to the

selected resource type.

 The values for resource arguments can make full use of expressions and

other dynamic Terraform language features.

META-ARGUMENTS:

 It can be used with any resource type to change the behavior of resources:

 depends_on : for specifying hidden dependencies

 count : for creating multiple resource instances according to

 a count

 for_each : to create multiple instances according to a map, or

 set of strings

 provider : for selecting a non-default provider configuration

 lifecycle : for lifecycle customizations

 provisioner : for taking extra actions after resource creation

EXAMPLE:

resource "aws_instance" "app_server" {

 count = 1

 ami = "ami-079db87dc4c10ac91"

 instance_type = "t2.micro"

 subnet_id = "subnet-060027219f6e3dae6"

 security_groups = ["sg-04cecc7e117da949e"]

 key_name = "ram"

 tags = {

 Name = "My-Server"

 }

 }

 TERRAFORM
 Mr. RAM

CUSTOM CONDITION CHECKS:

 You can use precondition and postcondition blocks to specify assumptions

and guarantees about how the resource operates.

resource "aws_instance" "example" {

 instance_type = "t2.micro"

 ami = "ami-abc123"

 lifecycle {

 # The AMI ID must refer to an AMI that contains an os.

 # for the `x86_64` architecture.

 precondition {

 condition = data.aws_ami.example.architecture == "x86_64"

 error_message = "The selected AMI must be for the x86_64

architecture."

 }

}

 }

$terraform fmt : It is used to rewrite Terraform configuration files to a

canonical format and style.

$terraform validate : It runs checks that verify whether a configuration is

syntactically valid and internally consistent, regardless of any provided

variables or existing state.

$terraform plan : It creates an execution plan, which lets you preview the

changes that Terraform plans to make to your infrastructure. By default,

when Terraform creates a plan it:$terraform plan

$terraform apply : It executes the actions proposed in a Terraform

plan.$terraform apply

$terraform destroy : It is a convenient way to destroy all remote objects

managed by a particular Terraform configuration.

 TERRAFORM
 Mr. RAM

OPERATION TIMEOUTS:

 Some resource types provide a special timeouts nested block argument that

allows you to customize how long certain operations are allowed to take

before being considered to have failed.

 For example, aws_db_instance allows configurable timeouts for create,

update, and delete operations.

resource "aws_db_instance" "example" {

 # ...

 timeouts {

 create = "60m"

 delete = "2h"

 }

}

 WHAT IS .ID:

 The .id is used internally by Terraform to track resource dependencies and

manage state.

 The .id attribute is primarily used in two ways:

REFERENCING RESOURCES:

 You can use the .id attribute to reference resources in your Terraform

configuration.

 This is particularly useful when you need to create dependencies between

resources.

OUTPUTTING RESOURCE IDS:

 You can output the .id of a resource using the output keyword.

 This is useful when you need to retrieve the ID of a resource for use

outside of Terraform.

 TERRAFORM
 Mr. RAM

EXAMPLE:

resource "aws_s3_bucket" "example" {

 bucket = "cloud-aws-bucket"

 tags = {

 Name = "My bucket"

 Environment = "Developer"

 }

}

resource "aws_s3_bucket_versioning" "versioning_example" {

 bucket = aws_s3_bucket.example.id

 versioning_configuration {

 status = "Enabled"

 }

}

$terraform fmt

$terraform validate

$terraform plan

$terraform apply

$terraform destroy

