

 GETTING STARTED

 WITH

 COMMAND LINE ARGUMENTS

 LINUX & SCRIPTING
 Mr. RAM

 COMMAND LINE ARGUMENTS (OR) POSITIONAL

PARAMETERS:

 The shell reserves some variable names for its use. $1 to $9 are nine shell

variables, called positional parameters or command line arguments, which
automatically collect the arguments known as command line.

 At the time of execution of shell script, if user passes any arguments known

as command line arguments or positional parameters.

The positional parameter values are from $1 to $9:

$1 : first parameter value
$2 :Second parameter value

$3 :Third parameter value

-

-
-

$9 :9th parameter value

 THE SPECIAL PARAMETERS ARE:

$0 : Name of the program (command being executed)

$$: PID of current shell
$? : Exit status of the last executed command.

$! : PID of last background process.

$_ : Current shell settings.

$# : Total number of positional parameters
$* : List of all shell arguments. Can't yield each argument separately.

$@ : Similar to $*, but yields each argument separately when enclosed

with double quotes.

Consider the following statement, where pname is any executable shell

script file and the remaining are the arguments.

$pname pro is to can as progress is to congress

 Where: $0 would be assigned pname
$1 would be assigned 'pro'

$2 would be assigned 'is' and so on, till 'congress' which is assigned to

$9.

 LINUX & SCRIPTING
 Mr. RAM

1. Write a program copying one file to another

$program.sh <sourcefilename> <targetfilename>

cp $1 $2

cat $2

The statement cp $1 $2 is translated by the shell as cp file1 file2 , as $1

called the first argument and $2, the second. Hence file1 is copied to file2,
and then cat $2 displays its contents.

2. Why we reminded you every time to change the mode of a shell script

before executing it:

$program1.sh <filename>

chmod 744 $1
$1

3. Example of special Positional Parameters:

#!/bin/sh

#Example of positional parameters

IFS=","

echo "Displaying all animal names using \$@"
echo "$@"

echo

echo "Displaying all animal names using \$*"
echo "$*"

$./script.sh Cat Dog Fox Monkey

4. special Positional Parameters:

#!/bin/bash
if [$# -gt 0]

then

echo "Your command line contains $# arguments"

else
echo "Your command line contains no arguments"

fi

 LINUX & SCRIPTING
 Mr. RAM

5. Another Example of special Positional parameters:

#!/bin/bash

if [$# -lt 3]

then

echo "ERROR: minimum 3 paramerts required"
echo "Example: myprog.sh fname lname city"

else

 echo "Program Name is $0"
 echo "First Name is $1"

 echo "Last Name is $2"

 echo "City is $3"

fi

 SETTING VALUES OF POSITIONAL PARAMETERS:

We have compared the positional parameters with variables they are in essence

quite different.

For example you can't assign values to $1, $2....etc. As we do to any other user
defined variables or system variables

a=10; but $1=10

b=alpha; $2=alpha Simply not done.

How positional parameters are set up by the command line arguments. There is

one more way to assign values to the positional parameters the set command.

Examples : $set friends come and go, but enemies accumulate

$1 :Friends

$2 :come

S3 :andso on

$set $1 $2 $3 $4 $5 $6 $7

$set Do you want credit or results
$set A smiling face is always beautiful

$echo $1 $2 $3 $4 $5 $6 $7

o/p : A smiling face is always beautiful

NOTE: On giving another set command, the old values of $1 $2...etc values are

discarded and the new values get collected.

 LINUX & SCRIPTING
 Mr. RAM

Let us now see another way of setting values in positional parameters:

$cat > lucky

Give luck a little time and

it will surely change

Ctrl+D
$set `cat lucky`

$echo $1 $2 $3 $4 $5

 Give luck a little time

Renames any file aaa to aaa.aa1, where aa1 is the user login name.

name=$1

set `who am i`
mv $name $name.$1

 Displaying date in desired format:

$date

Fri Apr 19 11:30:45 IST 2016

To display the information in any order

Fri Apr 19 11:30:45 IST
$set `date`

$echo $1 $3 $2 $6

 IFS:

 The IFS is a special shell variable.

 You can change the value of IFS as per your requirments.

 The Internal Field Separator (IFS) that is used for word splitting after

expansion and to split lines into words with the read builtin command.

 The default value is <space><tab><newline>.

Example with Internal Field saparator

#!/bin/bash

line="shell:scripting:is:fun."

IFS=:

set $line
echo $1 $2 $3 $4

Write a program user password file Revisited

#!/bin/sh

#user password file Revisited

echo "Enter a Username:\c"

 LINUX & SCRIPTING
 Mr. RAM

read logname
line=`grep $logname /etc/passwd`

IFS=:

set $line

echo "Username:$1"
echo "User ID:$3"

echo "Group ID:$4"

echo "Comment Field:$5"
echo "Home Directory:$6"

echo "Login Shell:$7"

To find how many positional parameters were set either by set

command or by command line arguments.

$vim myscript.sh

echo "Total number of files = $#"

$ myscript.sh file1 file2 file3

Total number of files=3

$ myscript.sh *
Total number of files=18

How come 18 positional parameters were reported to be set when there exist

only 9-$1,$2,$3...$9 ? fact is, we can supply any number of arguments, but

can access only nine of them at a time.

 USING SHIFT ON POSITIONAL PARAMETERS:

We have used the set command to set up 9 words. But we can use it for more.

$set you have the capacity to learn from mistakes. You will learn a lot in

your life

$echo $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11
You have the capacity to learn from mistakes. You You0 You1

Observe the last two words in the output. These occurred in the output
because at a time we can access only 9 positional parameters. When we tried

to refer to $10 it was interpreted by the shell as if you wanted to output the

value of $1 and a 0. Hence, we got You0 in the output. same as the story

with $11. Does that mean the words following the ninth word have been
lost?

 LINUX & SCRIPTING
 Mr. RAM

To avoid this problem using shift
$shift 7

$echo $1 $2....$9

mistakes. You will learn a lot in your life.

Now where first 7 words are gone? They have been shifted out. Each word

vacated a position for the one on its right with the first word getting lost in

the bargain. This occurred 7 times, hence we find the last 9 words in $1
through $9. The first seven are lost forever.

$a=$1 $c=$3 $e=$5 $g=$7

$b=$2 $d=$4 $f=$6 $shift 4
$echo $a $b $c...$g $1 $2 $3...$9

(or)

$echo $*

