

 GETTING STARTED

 WITH

 SHELL OPERATORS

 LINUX & SCRIPTING
 Mr. RAM

 SHELL OPERATORS:

 There are various operators supported by each shell. We will discuss in

detail about Bourne shell (default shell).

 Let us now see how we can operate upon these values you may recall that all

shell variables are string variables.

ARITHMETIC OPERATORS:

+ (Addition)

- (Subtraction)

* (Multiplication)

/ (Division)

% (Modulus)

NOTE: If we are to carry out arithmetic operators on them, we have to use

the command 'expr' which is capable of evaluating an arithmetic expression.

RELATIONAL OPERATORS:

 Relational Operators are two types:

 Numerical Comparison Operators

 String Comparison Operators

NUMERICAL COMPARISON OPERATORS:

-lt (Less than)

-le (Less than or equal to)

-gt (Greater than)

-ge (Greater than or equal to)

-eq (equal to)

-ne (Not equal to)

 STRING COMPARISON OPERATORS:

< (Less than)

> (Greater than)

= (Equal to)

!= (Not equal)

ASSIGNMENT OPERATOR:

= (equal)

 LINUX & SCRIPTING
 Mr. RAM

LOGICAL OPERATORS (BOOLEAN OPERATORS):

-a (Logical and)

-o (Logical or)

 ! (Logical not)

 BITWISE OPERATORS:

& : Bitwise And

 | : Bitwise OR

^ : Bitwise XOR

~ : Bitwise compliment

<< : Left Shift

>> : Right Shift

NOTE: Each and every operator, should contain space before and after

operator except assignment operator.

Example 1: a=10; b=4;

echo `expr $a + $b`

echo `expr $a - $b`

echo `expr $a * $b`

echo `expr $a / $b`

echo `expr $a % $b` #Modular division, returns remainder.

Example 2: a=30 b=15 c=2 d=5

$echo `expr $a * \($b + $c \) / $d`

NOTE: expr is capable of carrying out only integer arithmetic to carry out

arithmetic on real numbers or float arithmetic it is necessary to use the 'bc'

command.

Example of float vales: p=10.5; q=3.5;

echo `echo $a + $b` | bc

echo `echo $a - $b` | bc

echo `echo $a * $b` | bc

echo `echo $a / $b` | bc

echo `echo $a % $b` | bc

NOTE: expr $a + $b is a legal expression whereas bc $a + $b isn't. hence,

we have piped the result of echo to bc.

 LINUX & SCRIPTING
 Mr. RAM

Example 2: x=10.5 y=3.5

c=`echo $a + $b | bc`

d=`echo $a - $b | bc`

e=`echo $a * $b | bc`

f=`echo $a / $b | bc`

To get a value: $echo $c $d $e $f

 THE PROCESS OF USING “echo” WITH \r, \n, \t…ETC.:

THE CARRIAGE RETURN (\r):

The \r is called the carriage return. It causes the cursor to be positioned at the

beginning of the current line.

$echo "I LIKE WORK...\r I CAN SIT AND WATCH IT FOR HOURS

NEW LINE(\N):

By default, every echo statement echoes the output on a fresh line. If we want

that output of a single echo statement should be split across lines, we can use

the newline escape sequence as shown below.

$echo "I LIKE WORK....\n I CAN SIT AND WATCH IT FOR HOURS

TAB AND BACKSPACE (\t and \b):

The function of the tab key is emulated by the sequence \t, and that of the

backspace, by \b.

$echo "There is always one more \b\b\b\b\b bug. \t\t -By Law.

There is always one bug. -By Law

POSITIONING THE CURSOR (\C):

By default, after an echo statement, the cursor is placed at the beginning of the

next line.

$echo "Enter your choice....\c"

The cursor waits after the ellipsis and not on the next line.

