

 GETTING STARTED

 WITH

 LOOP CONTROL STRUCTURE

 LINUX & SCRIPTING
 Mr. RAM

 THE LOOP CONTROL STRUCTURE:

 The loop involves repeating some portion of the program either a specified

number of times or until a particular condition is being satisfied.

 There are three methods by way of which we can repeat a part of a program.

They are:

 While Statement

 Until Statement

 For Statement

WHILE STATEMENT:

 The bash while loop is a control flow statement that allows code or

commands to be executed repeatedly based on a given condition. (or)

 Looping is repeatedly executing a section of your program based on a

condition.

 The form of while loop is:

while [condition]

do

done

Example: Print numbers from 1 to 10:

#!/bin/sh

#Print 1 to 10 Numbers

i=1

while [$i -le 10]

do

echo $i

c=`expr $i+1`

done

 LINUX & SCRIPTING
 Mr. RAM

THE UNTIL LOOP:

 The statement within the until loop keep on getting executed till the exit

status of the control command remains false(1). When the exit status

become true(0), the control passes to the first command that follows the

body of the until loop.

 The general form of until loop is:

until [condition]

do

done

NOTE:

 There is a minor difference between the working of while and until loops.

The while loop executes till the exit status of the control command is true

and terminates when the exit status becomes false. Unlike this until loop

executes till the exit status of the control command is false and terminates

when this status becomes true.

Example: Prints numbers from 1 to 10 using until

#!/bin/sh

i=1

until [$i -gt 10]

do

echo $i

i=`expr $i+1`

done

As a rule the until must have a control command that will eventually return

an exit status 0(true), otherwise the loop would be executed forever,

indefinitely.

THE BREAK STATEMENT:

 We often come across situations where we want to jump out of a loop

instantly, without waiting to get back to the control command. The keyword

break allows us to do this. (or)

 LINUX & SCRIPTING
 Mr. RAM

 Break is keyword, to terminate the loop. The form of break keyword is:

while [condition]

do

break

done

Example:

#!/bin/bash

#Break statement example

count=1

while [$count -le 10]

do

if [$count -eq 4]

then

break

fi

echo $count

count=`expr $count + 1`

done

THE CONTINUE STATEMENT:

 Continue is the keyword to start the loop again.

 The general form is:

while [condition]

do

continue

done

 LINUX & SCRIPTING
 Mr. RAM

#!/bin/sh

#Example of Continue statement

count=0

while [$count -le 9]

do

count=`expr $count + 1`

if [$count -eq 5]

then

continue

fi

echo $count

done

echo "We are out of the loop now"

1. Write a program accept a string and display reverse of the given string.

#!/bin/sh

echo -n "Enter a string"

read string

l=`echo $string | wc -c`

while [$string -ne 0]

do

ch=`echo $string | cut -c $l`

temp=$temp$ch

l=`expr $l-l`

done

echo "Reverse of $string is: $temp"

2. Write a script accept file names and open:

#!/bin/sh

answer="y"

while [$ans = "y"]

do

echo "Enter a filename to open:"

read fname

if [-e $fname -a -f $fname]

then

cat $fname

else

echo "No such file"

fi

 LINUX & SCRIPTING
 Mr. RAM

echo "Do you want to open one more file [y/n]:"

read answer

done

Example of break and continue:

#!/bin/sh

while true #until false

do

echo "enter a file name to open:"

read fname

if [-e $fname -a -f $fname]

then

cat $fname

break

else

continue

fi

done

3. Write a script create "n" number of users

#!/bin/sh

echo -n "Enter number of users to create:"

read n

$i=1

while [$i -le $n]

do

$u=raju$i

useradd $u

i=`expr $i + 1`

done

Example 5: #!/bin/sh

i=1 j=1

while [$i -le 100]

do

while [$j -lt 200]

do

if [$j -eq 150]

then

break

else

echo $i $j

fi

 LINUX & SCRIPTING
 Mr. RAM

j=`expr $j+1`

done

i=`expr $i+1`

done

4. Example:

#!/bin/sh

i=1

while [$i -le 2]

do

j=1

while [Sj -le 2]

do

if [$i -eq $j]

then

j=`expr $j+1`

continue

fi

j=`expr $j+1`

echo $i $j

done

i=`expr $i+1'

done

5. Write a program when users log in

#!/bin/sh

#When users log in

echo "Enter a username:\c"

read logname

time=0

while true

do

who | grep "$logname" > /dev/null

if [$time -ne 0]

then

echo "$logname was $time miutes late in logged in."

fi

exit

else

time=`expr $time + 1`

sleep 60s

fi

 LINUX & SCRIPTING
 Mr. RAM

done

SLEEP COMMAND:

 Delay for a specified amount of time.

 Pause for NUMBER seconds. SUFFIX may be ‘s’ for seconds (the default),

‘m’ for minutes, ‘h’ for hours or ‘d’ for days. Unlike most implementations

that require NUMBER be an integer, here NUMBER may be an arbitrary

floating point number. Given two or more arguments, pause for the amount

of time specified by the sum of their values.

Example 1:

#!/bin/sh

#sleep example

echo "Enter a sentence:\c"

read str

for word in $str

do

echo $word

sleep 2

Example 2:

#!/bin/bash

x=10

while [$x -gt 0]

do

sleep 1s

clear

echo "$x seconds until blast off"

x=$(($x - 1))

done

 LINUX & SCRIPTING
 Mr. RAM

THE FOR LOOP:

• The for loop is more frequently used as compared to the while and until loops. Its

working is also different than the other two loops.

• The for allows us to specify a list of values which the control variable in the loop

can take. The loop is then executed for each value mentioned in the list.

• The general form of for statement is:

for variable in val1 val2 val3.....valn

do

done

Example:

#!/bin/sh

for word in High on a hill

do

echo $word

done

for file in mydir/letters/*.let

for var in mydir/a??

for entry in ../../??.*

for var in * #files in the present working directory

for var in $* #command line arguments.

The control variables can take values from a shell variables:

name="India is a great"

for word $name

do

echo $word

done

Control variables can take values from the output of a command:

for cmd in `cat sample`

do

man $cmd >>helpfile

done

 LINUX & SCRIPTING
 Mr. RAM

Write a program to display all empty files in the current directory:

#!/bin/sh

for i in *

if [! -s $i]

then

echo $i #rm $i :To delete empty files

fi

Reverse string:

#!/bin/bash

input="$1"

reverse=""

len=${#input}

for ((i=$len-1; i>=0; i--))

do

reverse="$reverse${input:$i:1}"

done

echo "$reverse"

Nesting of Loops: The way if statements can be nested, similarly while, until

and fors can also be nested.

Example: Demonstration of nested loops

#!/bin/sh

r=1

while [$r -le 3]

do

c=1

while [$c -le 2]

do

sum=`expr $r + $c`

echo r=$r c=$c sum=$sum

c=`expr $r + 1`

done

r=`expr $r+1`

done

 LINUX & SCRIPTING
 Mr. RAM

This program will add 1+2+3+4+5 and result will be 15

#!/bin/sh

#will add 1+2+3+4+5

for i in 1 2 3 4 5

do

sum=`expr $sum + $i`

done

echo $sum

Implementing for loop with break statement

#!/bin/sh

#Implementing for loop with break statement

for a in 1 2 3 4 5 6 7 8 9 10

do

if a is equal to 5 break the loop

if [$a == 5]

then

break

fi

Print the value

echo "Iteration no $a"

done

 Iteration Program:

#!/bin/sh

#Implementing for loop with continue statement

for a in 1 2 3 4 5 6 7 8 9 10

do

if a = 5 then continue the loop and

don't move to line 8

if [$a == 5]

then

continue

fi

echo "Iteration no $a"

done

 LINUX & SCRIPTING
 Mr. RAM

Nameservers Program:

#!/bin/bash

for file in /etc/*

do

if ["${file}" == "/etc/resolv.conf"]

then

countNameservers=$(grep -c nameserver /etc/resolv.conf)

echo "Total ${countNameservers} nameservers defined in ${file}"

break

fi

done

