

 DEVOPS
 Mr. RAM

 KUBERNETES NETWORKING:

 Networking is the backbone of modern technology.

 It is a central part of Kubernetes, but it can be challenging to understand

exactly how it is expected to work.

 The network model is implemented by the container runtime on each node.

 The most common container runtimes use Container Network Interface

(CNI) plugins to manage their network and security capabilities.

 There are 4 distinct networking problems to address:

 Highly-coupled container-to-container communications.

 Pod-to-Pod communications.

 Pod-to-Service communications.

 External-to-Service communications.

CONTAINER TO CONTAINER COMMUNICATION:

 This is solved by Pods and localhost communications.

 In Kubernetes, a Pod is the basic unit of deployment. It's essentially a group

of one or more containers that are deployed together in the same isolated

space. These containers inside a Pod share the same network namespace.

 Imagine you have a Pod with two containers: a web server and a database

server. The web server reserved port 80 for itself and the database server

reserved port 3306.

POD TO POD COMMUNICATION:

 All Pods in a Kubernetes cluster reside in a single, flat, shared network-

address space.

 A flat network-address space means, Every Pod gets its own IP address.

 Pods can communicate with all other pods in the cluster using pod IP

addresses (without NAT)

 If some Pods live on one node, and some other Pods live different node,

which are separated by additional, external networks.

 DEVOPS
 Mr. RAM

 SERVICE:

 Pod To Service Communications covered by Services.

 Kubernetes services provide a way of abstracting access to a group of pods

as a network service. which can be reached by a single, fixed DNS name or

IP address.

 The set of Pods targeted by a Service is usually determined by a selector.

SINGLE PORT SERVICE:

Suppose you have a set of Pods where each listen on TCP port 9376 and

contains a label app=MyApp:

MULTI-PORT SERVICES:

For some Services, you need to expose more than one port. When using

multiple ports for a Service, you must give all of your port’s names.

 DEVOPS
 Mr. RAM

DISCOVERING SERVICES:

 Kubernetes supports 2 primary modes of finding a Service.

 Environment variables

 DNS

Environment variables:

 When a Pod is run on a Node, the kubelet adds a set of environment

variables for each active Service.

 It adds {SVCNAME}_SERVICE_HOST and

{SVCNAME}_SERVICE_PORT variables, where the Service name is

upper-cased and dashes are converted to underscores. It also supports

variables.

DNS:

 A cluster-aware DNS server, such as CoreDNS, watches the Kubernetes API

for new Services and creates a set of DNS records for each one.

 If DNS has been enabled throughout your cluster, then all Pods should

automatically be able to resolve Services by their DNS name.

 For example, if you have a Service called my-service in a Kubernetes

namespace my-ns, the control plane and the DNS Service acting together

create a DNS record for my-service.my-ns.

 Kubernetes also supports DNS SRV (Service) records for named ports.

 The Kubernetes DNS server is the only way to access ExternalName

Services.

 DEVOPS
 Mr. RAM

PUBLISHING SERVICES (SERVICE TYPES):

 Kubernetes ServiceTypes allow you to specify what kind of Service you

want. Service Types are:

 ClusterIP

 NodePort

 LoadBalancer

 ExternalName

CLUSTERIP:

 Exposes the Service on a cluster-internal IP. Choosing this value makes the

Service only reachable from within the cluster. This is default ServiceType.

 Internally, Kubernetes resolves the label selector to a set of pods, and takes

the ephemeral Pod IP addresses and generates Endpoints resources that the

ClusterIP proxies traffic to.

 DEVOPS
 Mr. RAM

NODEPORT:

 Services of type NodePort build on top of ClusterIP type services by

exposing the ClusterIP service outside of the cluster on high ports (default

30000-32767).

 If no port number is specified then Kubernetes automatically selects a free

port.

 The local kube-proxy is responsible for listening to the port on the node and

forwarding client traffic on the NodePort to the ClusterIP.

 This Service is visible as <NodeIP>:spec.ports[*].nodePort.

 NodePort can be useful when manually configuring external load balancers

to forward layer 4 traffic from clients outside of the cluster to a particular set

of pods that are running in the Kubernetes cluster.

 In such cases, the specific port number that is used for NodePort must be set

ahead of time, and the external load balancer must be configured to forward

traffic to the listening port on all worker nodes.

 DEVOPS
 Mr. RAM

 EXAMPLE:

 DEVOPS
 Mr. RAM

LOADBALANCER:

 The LoadBalancer service type is built on top of NodePort service types by

provisioning and configuring external load balancers from public and private

cloud providers. It exposes services that are running in the cluster by

forwarding layer 4 traffic to worker nodes.

 This is a dynamic way of implementing a case that involves external load

balancers and NodePort type services.

 DEVOPS
 Mr. RAM

 The actual creation of the load balancer happens asynchronously, and

information about the provisioned balancer is published in the Service's

.status.loadBalancer field.

EXTERNALNAME:

 Services of type ExternalName map a Service to a DNS name, not to a

typical selector such as my-service or cassandra . You specify these Services

with the spec.externalName parameter.

NOTE: ExternalName accepts an IPv4 address string, but as a DNS name

comprised of digits, not as an IP address.

 DEVOPS
 Mr. RAM

DNS FOR SERVICES AND PODS:

 Kubernetes creates DNS records for services and pods. You can contact

services with consistent DNS names instead of IP addresses.

 Every Service defined in the cluster is assigned a DNS name.

 DNS Records are:

 Services DNS Records

 Pods DNS Records

SERVICES DNS RECORDS:

A/AAAA RECORDS:

 A/AAAA Record is the most basic type of a DNS record used to point a

domain or subdomain to a certain IP address.

 "Normal" Services are assigned a DNS A or AAAA record, depending on

the IP family of the service, for a name of the form my-svc.my-

namespace.svc.cluster-domain.example. This resolves to the cluster IP of

the Service.

SRV RECORDS:

 SRV records facilitate service discovery by describing the protocol/s and

address of certain services.

 An SRV record usually defines a symbolic name and the transport protocol

(e.g., TCP) used as part of the domain name and defines the priority, weight,

port, and target for a given service (see the example below)

POD DNS RECORDS:

A/AAAA RECORDS:

 A/AAAA Record is the most basic type of a DNS record used to point a

domain or subdomain to a certain IP address.

POD’S HOSTNAME AND SUBDOMAIN FIELDS:

 The default hostname for a pod is defined by a pod’s metadata.name value.

However, users can change the default hostname by specifying a new value

in the optional hostname field. Users can also define a custom subdomain

name in a subdomain field.

 DEVOPS
 Mr. RAM

POD'S DNS CONFIG:

 Pod's DNS Config allows users more control on the DNS settings for a Pod.

 The dnsConfig field is optional and it can work with any dnsPolicy settings.

However, when a Pod's dnsPolicy is set to " None ", the dnsConfig field has

to be specified.

 The properties a user can specify in the dnsConfig field:

 nameservers

 searches

 options

$kubectl create -f <file-name>

$kubectl get pods

$kubectl exec -it dns-example -- cat /etc/resolv.conf

 DEVOPS
 Mr. RAM

CONNECTING APPLICATIONS WITH SERVICES:

 Kubernetes assumes that pods can communicate with other pods, regardless

of which host they land on. Kubernetes gives every pod its own cluster-

private IP address, so you do not need to explicitly create links between pods

or map container ports to host ports.

 This means that containers within a Pod can all reach each other's ports on

localhost, and all pods in a cluster can see each other without NAT.

CREATING A POD:

$kubectl apply -f <file-name>

$kubectl get pods -l run=my-nginx -o wide

$kubectl get pods -l run=my-nginx -o yaml | grep podIP

 DEVOPS
 Mr. RAM

CREATING A SERVICE:

 So, we have pods running nginx in a flat, cluster wide, address space.

 A Kubernetes Service is an abstraction which defines a logical set of Pods

running somewhere in your cluster, that all provide the same functionality.

$kubectl create -f <file-name>

$kubectl get services

$kubectl get svc my-nginx

ACCESSING THE SERVICE:

 Kubernetes supports 2 primary modes of finding a Service - environment

variables and DNS.

Environment Variables:

$kubectl exec my-nginx-3800858182-jr4a2 -- printenv | grep SERVICE

DNS:

$kubectl get services kube-dns --namespace=kube-system

$kubectl run curl --image=radial/busyboxplus:curl -i --tty

[root@curl-131556218-9fnch:/]$ nslookup my-nginx

NOTE: $curl https://<EXTERNAL-IP>:<NODE-PORT> -k

