

 DEVOPS
 Mr. RAM

 DAEMONSET:

 A DaemonSet is a type of Kubernetes API object that replicates identical

Pods across the Nodes in your cluster.

 It ensures that all (or some) Nodes run a copy of a Pod. As nodes are added

to the cluster, Pods are added to them. As nodes are removed from the

cluster, those Pods are garbage collected. Deleting a DaemonSet will clean

up the Pods it created.

 DaemonSets are often used to run long-lived background services such as

Node monitoring systems and log collection agents.

 DaemonSets differ from any of these other Kubernetes workload types

because they have unique scheduling behavior.

 Pods, ReplicaSets, and Deployments schedule to available cluster Nodes

automatically, until the requested number of replicas is running. Unless you

set affinity rules, you can’t know which Nodes will be selected to run a Pod.

DaemonSets, however, ensure every Node runs a replica of the Pod.

USE CASES:

RUNNING NODE MONITORING AGENTS:

 In-cluster services that collect metrics data from your Nodes need to reliably

deploy a Pod on each one. DaemonSets implement this behavior without

requiring any special configuration.

COLLECTING LOGS FROM NODES:

 Similarly, collecting the contents of Node-level logs (such as Kubelet and

kernel logs) helps you audit your environments and troubleshoot problems.

Deploying your logging service as a DaemonSet ensures all your Nodes will

be included.

BACKING UP NODE DATA:

 Backups are another good candidate for DaemonSets. Using a DaemonSet

ensures all your Nodes will be included in your backups without making you

scale or reconfigure your backup service when Nodes change.

 If some Nodes don’t need backups, you can customize your DaemonSet so

that only relevant Nodes are covered

 DEVOPS
 Mr. RAM

CREATE A DAEMONSET:

 The simple manifest for a DaemonSet that runs the Fluentd logging

system on each of your cluster’s Nodes:

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: fluentd

spec:

 selector:

 matchLabels:

 name: fluentd

 template:

 metadata:

 labels:

 name: fluentd

 spec:

 containers:

 - name: fluentd-elasticsearch

 image: quay.io/fluentd_elasticsearch/fluentd:latest

 Use Kubectl to apply it to your cluster:

$kubectl apply -y <file-name>

 To get Daemonsets:

$kubectl get daemonset

$kubectl get pods -o wide

 DEVOPS
 Mr. RAM

SCOPING DAEMONSETS TO SPECIFIC NODES:

 We can configure DaemonSets with a nodeSelector and affinity rules to

run Pods on only some of your cluster’s Nodes. These constraints are set

using the DaemonSet’s spec.template.spec.nodeSelector and

spec.template.spec.affinity fields, respectively.

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: fluentd

spec:

 selector:

 matchLabels:

 name: fluentd

 template:

 metadata:

 labels:

 name: fluentd

 spec:

 nodeSelector:

 - log-collection-enabled: "true"

 containers:

 - name: fluentd-elasticsearch

 image: quay.io/fluentd_elasticsearch/fluentd:latest

 Before applying, set the log-collection-enabled: true label on one of

your Nodes:

$kubectl label node Node2 log-collection-enabled=true

$ kubectl apply -f fluentd.yaml

$ kubectl get daemonsets

 Pod list will confirm that the Pod is running on the labelled Node2:

$ kubectl get pod -o wide

