
Nested try - block :

The concept of defining one try block inside another try block is know as a "Nested

try block".

Syntax

try:

 ========

 try:

 ========

 except:

 ========

except:

 =========

We have 2 types of try-blocks.
 1. Outer try block

 2. Inner try block

 A try block which contains another try block is known as outer-try block.

 A try block which is defined in another try-block is known as a inner-try

block.

 If exception is occured in outer try block then control will goto outer except

block.

 If outer try except block is not handled that exception then program will be

terminated abnormally.

 If exception is occured in the inner try block then control will goto inner try

related except block.

 If inner try related except block is not handled that exception then controll

will goto the outer try related except block.

 If outer try related except block is also not handled that exception then

program will be terminated abnormally.

Example 1: If no exception is raised then executes try block and finally block

statements.

try:

 print('in try1')

 try:

 print('in try2')

 try:

 print('in try3')

 except:

 print('in except3')

 finally:

 print('in finally3')

 except:

 print('in except2')

 finally:

 print('in finally2')

except NameError:

 print('in except1')

finally:

 print('in finally1')

Output

Example 2: If RuntimeError is not handled properly then throws exception

try

 print('in try1')

 try:

 print('in try2')

 print(10/0)

 try:

 print('in try3')

 except:

 print('in except3')

 finally:

 print('in finally3')

 except ValueError:

 print('in except2')

 finally:

 print('in finally2')

except NameError:

 print('in except1')

finally:

 print('in finally1')

Output:

Note: Here our program excution terminated abnormally because Runtime

Exception is not handled properly.

Example 3: What is output Indentify ?

try:

 print('try-1')

 a = 10 / 2

 try:

 print('try-2')

 b = 10 / 0

 except TypeError:

 print('except-2')

except:

 print('except-1')

print('end line')

Output:

Example 4: What is output Indentify ?

try:

 print('try-1')

 a = 10 / 2

 try:

 print('try-2')

 b = 10 / 0

 except TypeError:

 print('except-2')

 finally:

 print('finally-2')

except NameError:

 print('except-1')

finally:

 print('finally-1')

print('end line')

Output:

Example 5: What is output Indentify ?

try:

 print('try-1')

 a = 10 / 2

 try:

 print('try-2')

 b = 10 / 0

 except TypeError:

 print('except-2')

 finally:

 print('finally-2')

except NameError:

 print('except-1')

except:

 print('default except')

finally:

 print('finally-1')

print('end line')

Output:

else: block

 We can also use the else statement with the try-except statement in which,

we can place the code which will be executed in the scenario if no exception

occurs in the try block.

 The syntax to use the else statement with the try-except statement is given

below.

Syntax:

Example 6: How to read the data from given file using exception handling?

fileObject = None

try:

 fileObject = open('demo.txt' , 'r')

except:

 print('file not found') # if demo.txt file not available

else:

 data = fileObject.read() # if demo.txt file available

 print(data)

finally:

 if fileObject:

 fileObject.close()

Output 1:

Output 2:

The except statement using with "exception variable"

 We can use the exception variable with the except statement. It is used by

using the "as" keyword.

 This object will return the cause of the exception.

Syntax:

try:

 pass

 except ExceptionName as e:

 pass

Example 7: return the cause of exception into a exception variable using as

keyword

try:

 a = int(input("Enter a value :"))

 b = int(input("Enter b value ::"))

 c = a/b

 print(c)

Using exception object with the except statement

except Exception as e:

 print("can't divide by zero")

 print(e)

else:

 print("Hi I am else block")

Output 1:

Output 2:

TYPES OF EXCEPTIONS :

 Predefined Exceptions

 Userdefined Exceptions

1. Predefined Exceptions :

 The RuntimeError representation classes which are present in python

software are known as "predefined execution".

 For example : ValueError, ZeroDivisionError , NameError , etc…

 These are raised automatically when ever corresponding RuntimeError is

occured.

2. User defined Exceptions:

 Any user defined class which is extending by any one of the predefined

exception class is known as a user defined exception.

Syntax:

 class Userdefined_Exception_className(Predefined_exception_class) :

 ======= =======

 ======= =======

Example:

class MyClass(ZeroDivisionError):

 pass

 User defined exceptions will not "raise" automatiacally. So that we have to

write those exceptions explicitly.

 NOTE : Creating the RuntimeError representation class object explicitly is

known as a "Raising the Exception"

 By using "raise" keyword, we can raise the userdefined exceptions

explicitly.

Syntax: raise userdefined_exception_name

 After raising the exception , we can handle that exception by using "try &

except” blocks.

Example 8: How to creating User defined exceptions and raise those exceptions

explicitly.

class Error(Exception):

 '''base class for other exceptions'''

 pass

class ValueTooLargeError(Error):

 '''raised when input value is too large'''

 pass

class ValueTooSmallError(Error):

 '''raised when input value is too small'''

 pass

number = 10

while True:

 try:

 i_num = eval(input("Enter a Number : "))

 if i_num < number:

 raise ValueTooSmallError

 elif i_num > number:

 raise ValueTooLargeError

 else :

 print("Both are Equal numbers.")

 break

 except ValueTooSmallError:

 print("This value is too small, try again")

 except ValueTooLargeError:

 print("This value is Too Large, try again")

print("congrats")

Output:

Practice Examples:

Example 9: Find out the given number is within range or not ?

try:

 x = int(input('Enter a number upto 100: '))

 if x > 100:

 raise ValueError(x)

except ValueError:

 print(x, "is out of allowed range")

else:

 print(x, "is within the allowed range")

Output:

