
Hybird Inheritance Concept:
 Hybrid inheritance is a combination of multiple inheritance and multilevel

inheritance.

 The class is derived from the two classes as in the multiple inheritance.

However, one of the parent classes is not the base class. It is a derived class.

 Hybrid Inheritance combines more than one form of inheritance. It is a blend

of more than one type of inheritance.

Syntax:

class A:

 pass

class B(A):

 pass

class C(A):

 pass

class D(B,C):

 pass

Example:

class Student:

 def setStudent(self, sno, sname):

 self.sno = sno;

 self.sname = sname;

 def getStudent(self):

 print("Student No : ", self.sno);

 print("Student Name : ", self.sname);

class Marks(Student):

 def setMarks(self, m1, m2):

 self.mark1 = m1;

 self.mark2 = m2;

 def getMarks(self):

 print("Mark1 : ", self.mark1);

 print("Mark2 : ", self.mark2);

class Pratical:

 def setPractial(self, p1):

 self.p1 = p1;

 def getPractial(self):

 print("Practial marks : ", self.p1);

class Result(Marks, Pratical):

 def findTotal(self):

 self.total = self.mark1 + self.mark2 + self.p1;

 def getTotal(self):

 print("Total Marks are : ", self.total);

r = Result();

r.setStudent(10, "Srinivas");

r.setMarks(50, 60);

r.setPractial(100);

r.getStudent()

r.getMarks()

r.getPractial()

r.findTotal()

r.getTotal()

Output:

super() method Concept:
The super() builtin returns a proxy object (temporary object of the superclass) that

allows us to access methods of the base class.

In Python, the super() function is used to refer to the parent class or superclass. It allows

you to call methods defined in the superclass from the subclass, enabling you to extend and

customize the functionality inherited from the parent class.

Syntax: super()

Return : Return a proxy object which represents the parent’s class.

Q. What is use of super() method in OOPs concept ?

Example:

class Sample:

 def __init__(self):

 print('This is Sample class constructor')

 def message1(self):

 print('Hello Good morning')

class Example(Sample):

 def __init__(self):

 super().__init__()

 print('This is Example class constructor')

 def message2(self):

 print('Hello Students')

 # accessing super class

 super(Example, self).message1()

 super().message1()

s = Sample()

e = Example()

e.message2()

https://www.geeksforgeeks.org/python-programming-language/

Output:

Example:

class Animal(object):

 def __init__(self, animal_type):

 print('Animal Type:', animal_type)

class Mammal(Animal):

 def __init__(self):

 # call superclass

 super().__init__('Mammal')

 print('Mammals give birth directly')

dog = Mammal()

Output:

Animal Type: Mammal

Mammals give birth directly

Use of super()

In Python, super() has two major use cases:

 Allows us to avoid using the base class name explicitly

 Working with Multiple Inheritance

Example 1: super() with Single Inheritance

In the case of single inheritance, we use super() to refer to the base class.

class Mammal(object):

 def __init__(self, mammalName):

 print(mammalName, 'is a warm-blooded animal.')

class Dog(Mammal):

 def __init__(self):

 print('Dog has four legs.')

 super().__init__('Dog')

d1 = Dog()

Output

Dog has four legs.

Dog is a warm-blooded animal.

Here, we called the __init__() method of the Mammal class (from the Dog class) using code

super().__init__('Dog')

instead of

Mammal.__init__(self, 'Dog')

Since we do not need to specify the name of the base class when we call its members, we

can easily change the base class name (if we need to).

changing base class to CanidaeFamily

class Dog(CanidaeFamily):

 def __init__(self):

 print('Dog has four legs.')

 # no need to change this

 super().__init__('Dog')

The super() builtin returns a proxy object, a substitute object that can call methods of the

base class via delegation. This is called indirection (ability to reference base object

with super())

Since the indirection is computed at the runtime, we can use different base classes at

different times (if we need to).

Example 2: super() with Multiple Inheritance:

class Animal:

 def __init__(self, Animal):

 print(Animal, 'is an animal.');

class Mammal(Animal):

 def __init__(self, mammalName):

 print(mammalName, 'is a warm-blooded animal.')

 super().__init__(mammalName)

class NonWingedMammal(Mammal):

 def __init__(self, NonWingedMammal):

 print(NonWingedMammal, "can't fly.")

 super().__init__(NonWingedMammal)

class NonMarineMammal(Mammal):

 def __init__(self, NonMarineMammal):

 print(NonMarineMammal, "can't swim.")

 super().__init__(NonMarineMammal)

class Dog(NonMarineMammal, NonWingedMammal):

 def __init__(self):

 print('Dog has 4 legs.');

 super().__init__('Dog')

d = Dog()

print('')

bat = NonMarineMammal('Bat')

Output:

Dog has 4 legs.

Dog can't swim.

Dog can't fly.

Dog is a warm-blooded animal.

Dog is an animal.

Bat can't swim.

Bat is a warm-blooded animal.

Bat is an animal.

Method Resolution Order (MRO)

Method Resolution Order (MRO) is the order in which methods should be inherited in the

presence of multiple inheritance. You can view the MRO by using the __mro__ attribute.

>>> Dog.__mro__

(<class 'Dog'>,

<class 'NonMarineMammal'>,

<class 'NonWingedMammal'>,

<class 'Mammal'>,

<class 'Animal'>,

<class 'object'>)

Here is how MRO works:

 A method in the derived calls is always called before the method of the base class.

In our example, Dog class is called before NonMarineMammal or NoneWingedMammal. These

two classes are called before Mammal, which is called before Animal, and Animal class

is called before the object.

 If there are multiple parents like Dog(NonMarineMammal, NonWingedMammal), methods

of NonMarineMammal is invoked first because it appears first.

	Example:
	Use of super()
	Example 1: super() with Single Inheritance
	Example 2: super() with Multiple Inheritance:
	Method Resolution Order (MRO)

