
Disadvantage of Array:
Whenever we use array, it cannot grow the size dynamically
While storing the data in the array, index to be provided by the developer
We cannot instantiate the array without size. To overcome these disadvantages
Collection framework is introduced in Java.

Collection Framework:
Parent in the collection framework is Iterable.
Collection framework is used to store the group of objects together
Collection is an interface.
Collections is class
List Interface: This List interface has many abstract methods. If we try to
implement this interface we need to override or provide the logic for all the
abstract method. Since we don’t know this, Java creates have created some class
called Array List, Vector which implements List interface.

Array List:

ArrayList extends AbstractList which implements List interface If you print any
collection it will print values present in the collection because it has overridden the
toString() method Where as Array cannot print

Internal Data Structure for Array List is Object[]
Array List accepts Duplicates
Default capacity of AL is 10
What is the data structure used by ArrayList is Array (Object Array)
There is a variable present in Arraylist class and it creates the Array list with this

Collection	Notes

capacity when we create the object or when we call the constructor
Array List allows duplicates
Array list is not synchronized.
Array List is Ordered

What happens inside add method or What is the internal implementation of add
method ?

AL internally uses the Object array (Object[]) First it checks for the capacity If is
reached then it will increment the capacity by 50% on old capacity Later it does the
copy of the elements using Arrays.copy of method

If the capacity is not reached then directly it will add the elements

What internally happens when remove(2) is called or what is the internal
implementation of remove method ?

The argument that the remove method accepts is index. . First AL checks whether
the index is present by validating the passed index is negative or greater than or
equal t array size or not, if not present then throws Array index out of bound
exception if not get the element present in the index and then it removes from
that position and re arrange the AL and returns the removed element

During the remove method, left shift operation will be performed. Internally it uses
System.arraycopy method to copy the data and perform the left shift operation

Since the left shift operation is performed, to remove the empty space we should
reduce the index in remove method

How to convert Array to AL ?
Using iteration or Arrays.asList(); After performing the Arrays.asList we cannot add
any new element because it is not creating the AL. To solve this List l= new
ArrayList(Arrays.asList()); This statement will call the single arguement constructor
of AL which accepts collection object

How to create Custom ArrayList ?
Create the class and create the constructor. Since the internal Data structure of
array list is Object[], create the instance of Object[] and then initialize it in the
constructor

Have the variables for default value, index
Define the array, because AL internally uses Array List
Create the Default constructor and initialize the array

Create Add method
In Add method check the capacity by comparing index and the default capacity or
length of Object[]

If index reached to default capacity then increment the size by 50% and do array
copy

Else Add the element and increment the index.
Create another class and instead of using the AL use custom arraylist

Create the remove method:
Check if the indextobedeleted should not be negative and should not be greater
than or equal to array size.

If yes throw the exception.
Find the number of shift operations (no of Shift operations =Array.lengh-
indextoBedeleted-1)

If the no of shift operations>0 then using the System.arrayCopy method copy the
data and do shift operation

Create the Get Method:
Check if the index passed to the get method should not be negative and should not
be greater than or equal to array size.

If yes throw the exception.
If not get the data from internal DS Object[] and return the data

Custom ArrayList code snippet

Vector
In AL increase capacity by 50 % of the existing capacity where Vector will
increment the capacity by 100%

Vector is synchronized and AL is not synchronized.
Vector is also Ordered and allows duplicates

HashMap
HashMap is a class which implements from Map interface
Important note is Map doesn’t implement from Collection Interface

What is the internal data structure of hash Map ?
Node[]

How does the hash map works internally ? Or what is the implementation of put
method ?

Put method accepts 2 arguments, first object is called as key object and second one is called as Value
object. Since we cannot store 2 values, internally hash map has class called Node.

First find out hash of the key
Then divide it by the 16 buckets which gives the index
Now at this index store the element in the form of Node by calling the internal Node class constructor
Node will contain hash, key , value and address of next node
If it happens that index of 2 keys are same then it is referred as collision
Example: Hashmap.put("A", 64)

Hashmap.put("B", 64)
Here in this example, Keys are different but when we calculate the hashcode hashcode for A is 65
Hash code for B is 66, these both will result index as 4, this is called as collision

In case collision hash map follows linked list approach
At index first node will contain the address next node
Hash Map doesn't allow duplicates keys,

How does the hash map identify that the key provided by the developer is duplicate ?
Hash map internally uses has code and equals method, Using these method it identifies that the key is
duplicate. If the hash map key is user defined object like Employee or Department then we need to
override the equals and hashcode method to tell hashmap that derive the duplicate check based on the
implementation of these has code and equals method

What is the internal implementation of get method of Hash Map ?
first system finds the hash of the key then find out index by dividing the hash /16
Now it compares the hash at the index.
If there are multiple nodes present then it checks hash of each and every node until it is matched Once it
is matched it checks the key.

If key also matches the retrieves the value and returns it

What is the performance issue in Hash Map ?
After calculating the index it may happens that multiple indexes may get stored at a specific index.
If we try to retrieve the value then it has to compare with all the nodes present at that index. This is
termed as performance issue in Hash Map.

To get rid of this B-tree implementation is used from Java 1.8 onwards

Write a program to not to allow duplicate employees into hashmap ?

Override the hashcode and equals method like above and in the main class, when ever we call hash map put
method system calls the hashcode and equals method and determines if it is duplicate then value will be
overridden

In the above program, output from line number 13 is size is 1 and 14 is [A,58] The key object is String object. In
string class hash code and equals method is overridden and hence if we give same key value is over ridden
Similarly, Above we implemented hash code and equals method in Employee class. If 2 employees has same
emo id then it is considered as duplicate the same we mentioned in hash code and equals method so
If you look at the above line number 25 output is 2 as e and e1 are 2 different object but the employee id
passed to the object is same and as per hash code and equals implementation these are considered as
duplicates.
Why does the hashmap doesn't allow duplicate keys ?

HashMap internally calls equals and hashcode method due to which if the user provides the duplicate key
then previous value is overridden by current value

What is meant by loading factor in Hash Map ?
The Load factor is a measure that decides when to increase the HashMap capacity to maintain the get()
and put() operation complexity of O(1).

The default load factor of HashMap is 0.75f (75% of the map size)
We insert the first element, the current load factor will be 1/16 = 0.0625. Check is 0.0625 > 0.75 ? The
answer is No, therefore we don’t increase the capacity.

Next we insert the second element, the current load factor will be 2/16 = 0.125. Check is 0.125 > 0.75 ?
The answer is No, therefore we don’t increase the capacity.

Similarly, for 3rd element, load factor = 3/16 = 0.1875 is not greater than 0.75, No change in the capacity.
4th element, load factor = 4/16 = 0.25 is not greater than 0.75, No change in the capacity.
5th element, load factor = 5/16 = 0.3125 is not greater than 0.75, No change in the capacity.

6th element, load factor = 6/16 = 0.375 is not greater than 0.75, No change in the capacity.
7th element, load factor = 7/16 = 0.4375 is not greater than 0.75, No change in the capacity.
8th element, load factor = 8/16 = 0.5 is not greater than 0.75, No change in the capacity.
9th element, load factor = 9/16 = 0.5625 is not greater than 0.75, No change in the capacity.
10th element, load factor = 10/16 = 0.625 is not greater than 0.75, No change in the capacity.
11th element, load factor = 11/16 = 0.6875 is not greater than 0.75, No change in the capacity.
12th element, load factor = 12/16 = 0.75 is equal to 0.75, still No change in the capacity.
13th element, load factor = 13/16 = 0.8125 is greater than 0.75, at the insertion of the 13th element we
double the capacity. Now the capacity is 32.

Hash Set
Hash set is a class in Java and it implements from Set interface.
Set internally implements from collection interface

What is the internal data structure of Hash Set ?
Hash Set internally uses the Hash Map structure
Where the map gets initialized in (hashset constructor)
Where the map gets initialized in (hashset constructor)
Default capacity is 16 and loading factor 0.75

When the set is using the map internally, map needs key and value but in hash
set when we use the add method to insert the element we pass only 1 object,
will that be treated as Key or value ?

What ever we passed to the add method of hash set will be taken as key and value is (OBJECT)--you
can find final Object PRESENT=new Object();

why set doesn't allow duplicates ?
because it follows map structure and map doesn't allow duplicates
Hashset or hashmap doesn’t guarantee the order Where linked hashmap and linked hash set
guarantee the insertion order why because it uses double linked list approach and each node
contain the address of next hence insertion order is preserved

Why Hash Set doesn't have get method ?
The purpose of get method is to retrieve the value present at that index in case of array list
The purpose of get method is to retrieve the value for the passed key in case of HashMap
Incase of hash set internal data structure is Hash Map and value for all the elements of Hash set is
Object of Object class. So if we have the get method what ever we pass we get same value which is
object of object class and we can get this object by creating it hence there is no get method in hash
set.

What is meant by Synchronization ?
Array List, Hash Map and Hash set are not synchronized. What exactly synchronized means. If 2
threads are trying to perform some operation on the same object then while 1 threading working
other thread should go into wait mode.

ArrayList is not synchronized means multiple threads can work on same array list object at a time
which may lead to inconsistent output where as vector is synchronized so when multiple threads
are working on same vector object, out put is consistent.

What is Comparable, comparator and what are the differences between them ?

In Java, the Comparator and Comparable interfaces are both used for sorting and ordering objects,
but they differ in their implementations and purposes.

Collection.sort by default calls the comparable interface compare to method unless we provide the
comparator to sort method

Comparable Comparator
It is present in Java.lang package It is present in Java.util package

It has abstract method compareTo which takes 1
arg

It has the abstract method compare which takes 2
args

By default all the wrapper classes implements
comparable interface

User or developer should write the comparator to
have specific logic

What is iterator ?
We know that Iterable is the parent in the collection framework. Iterable has an abstract method
called Iterator<T> iterator(); This iterator method return type is Iterator

Iterator is an interface in java
List interface in directly extends interable so the classes (Array List, Vector) should override this
abstarct method iterator.

In Java, an Iterator is an interface that provides a way to traverse and access elements of a
collection in a sequential manner. It is part of the Java Collections Framework and is used to iterate
over elements of various collection classes like List, Set, Queue, and Map.
The Iterator interface provides three main methods:
boolean hasNext(): This method returns true if there are more elements to iterate over, and false
otherwise. It is commonly used in a loop to check if there are more elements before retrieving the
next element.
E next(): This method returns the next element in the collection. It moves the iterator forward to
the next element and returns that element. If there are no more elements, it throws a
NoSuchElementException.
void remove(): This method removes the last element returned by the next() method from the
underlying collection. It is an optional operation, and not all collections support it. If the remove()
method is called without a preceding call to next(), or if it is called multiple times after a single call
to next(), it will throw an IllegalStateException.

What are the differences between iterator and List iterator ?
Write a program to sort the array list by ascending

Using collections.sort method we can sort the array List.
Other technique is to use any of the sorting technique. Like merge sort, quick sort etc.
Collections.sort method will sort the data by ascending order
Sort method takes the List object as parameter so we can pass Array List, or Vector or any class that
implements the List interface

In the above example, array List contains the integers so when Collections.sort method is called,
Sort method checks that what type of data List is holding. Here in the above it is storing the data as
Integer

Integer class by default implements comparable interface so it has overridden the compareTo

method. By default implementation of compareTo implementation of Integer wrapper class is
ascending order.
So the working of sort method is that it check the generics supplied to the List should implement
comparable or comparator. If not it will throw the compilation error.

All the wrapper class implements the comparable interface. The default implementation of all the
wrapper class compareTo method follows natural sorting order.

Sorting the Array List which contains the employee Object by Emp Id (or) Write a
program to sort the employee by emp id

In the above program, we can see the compilation error at sort method. Why the sort method
shows the compilation error is because, when we use sort method, sort method accepts List
interface so the generics used in the sort should implement comparable or comparator

Look at above program, Since the generics is Employee, we have implemented the comparable
interface and overridden compareTo method. The logic of compareTo method is that order by emp
id so when the above program executes it sorts the employees by emp id

Compilation error is resolved.
Sorting the Array List which contains the employee Object by Emp Name (or) Write a
program to sort the emplist by employee name

Since the compareTo method in Employee class follows the sort by emp Id, to solve the above question of
sort the employees by name we should not change the implementation of compareTo method because, if
we change then where ever sort method is used that implementation will get change, to overcome this
we should use separate comparator

In the above code comparator is created and using the overloaded sort method specific comparator
is passed so that it sorts the empList by name. If we want to sort the employees by salary then the
commented line in the above program will work.

What is Concurrent Modification Exception ?
While iterating over the collection and performing the next method, if the user is trying to perform any
structural modification then concurrent modification exception is thrown.

Map, Set and List whenever we try to iterate and trying add the element then these collection will throw
the concurrent modification exception.

1. l.add(10);
l.add(25);
Iterator it=l.iterator();
While(it.hasNext())
{
Sysout(it.next());

l.add(45)
}
Here in the above program, whenever we add the element to collection internally java uses the

modcount variable and it gets incremented whenever we try to perform the add or remove operation so
when we try to call next() method (look at next() method in ArrayList or any other collection) it checks for
the earlier mod count and expected mod count, if both are not matching it throws the concurrent
modification exception
To get rid of this error we go for Concurrent hash map, If it is a array list then we go for Copy on write

array list
If it is a set then we go for copy on write array set
CopyOnWriteArrayList
In order to have the concurrency in the list we go for Copy on write ArrayList
It has the lock in add and remove etc
It uses the reentrant lock It doesn't throw concurrent modiofication exception because the iteration will
happen on new array and not on the original array

The design pattern followed in this is iterative design pattern (For Iteration separate collection, adding
the data separate collection is used)

Linked List
The major difference between Array list and Linked list regards to their structure.
Arrays list are index based data structure where each element associated with an index.
On the other hand, Linked list relies on references where each node consists of the data and the
references to the previous and next element

Basically, an array is a set of similar data objects stored in sequential memory locations under a common
heading or a variable name.

While a linked list is a data structure which contains a sequence of the elements where each element is
linked to its next element.

There are two fields in an element of linked list. One is Data field, and other is link field, Data field
contains the actual value to be stored and processed. Furthermore, the link field holds the address of the
next data item in the linked list

Difference between Array List and Linked List

Array List Linked List
This class uses a dynamic array to store the
elements in it. With the introduction of
generics, this class supports the storage of all
types of objects.

This class uses a link (Address of next node)
store the elements in it. Similar to the ArrayList,
this class also supports the storage of all types
of objects.

Manipulating ArrayList takes more time due to
the internal implementation. Whenever we
remove an element, internally, the array is
traversed and the memory bits are shifted.

Manipulating Linked List takes less time
compared to ArrayList because, there is no
concept of shifting the memory bits. The list is
traversed and the reference link is changed

This class works better when the application
demands storing the data and accessing it.
Adding data at the end is easy, removing or
adding data in middle is time consuming which
involves left shift operation

This class works better when the application
demands manipulation of the stored data.
Example: deleting or adding in middle or last
etc

If at all we have to create the user defined linked list or custom linked list then we should use the static
class to define the data and the next node address like below

How to Add or insert element to custom linked list:
In order to perform the insert first create the object to Node class by passing the value (it is like
calling the single argument constructor) then take the head node and check if it is null , for the first

time it will be null so assign the above created node object
For the next element onwards to insert the node, iterate the Node till you reach the null and then
assign the element (i.e -> when you get node.next is null that means there is no next element since
the next is null and it is not pointing to any other node)

(because in Linked list every node will contain the address of next node, when the node.next is null
means there is no next node and this is the right place to insert the new node)

How to Count the Nodes ?
In order to count the number of nodes, Take a variable and initialize it to 0, and increment it until
you get node.next is null. (because in Linked list every node will contain the address of next node,
when the node.next is null means there is no next node)

How to get the element in Custom Linked List ?
Start the logic from first node, and compare the index that is passed in get method with the index
stored in the Linked List. By taking the next node repeat the logic until you get the value same.
When the node.next is null and still if we didn't find the element means, the object passed in the
get method is not present in the Linked list

How to delete the Node To delete the node ?
user has to provide which node to be deleted, i.e to the delete method user will mentioned which
object he wants to delete Iterate over the linked link till you reach Node.next ==null then find it,
each time when this logic is performed, take the value of previous node and keep it in temp
variable and when the user entered node matches with the node to be deleted then change the
reference like. Previous.next = n.next

How to add the node before Head ? Please look at the program
How to add the node in middle or at a specific position ? Please look at the program
How to remove the node which is at head or middle or end ? Please look at the program

